用户名: 密码: 验证码:
碳化锆陶瓷有机前驱体的热解过程
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Pyrolysis of an organic polymeric precursor of zirconium carbide ceramics
  • 作者:孔玮佳 ; 于守泉 ; 戈敏 ; 张伟刚 ; 杜令忠
  • 英文作者:Weijia KONG;Shouquan YU;Min GE;Weigang ZHANG;Lingzhong DU;State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences;School of Chemical Engineering, University of Chinese Academy of Sciences;
  • 关键词:碳化锆陶瓷 ; 有机前驱体 ; 碳热还原
  • 英文关键词:zirconium carbide;;polymeric ceramic precursor;;carbothermal reduction
  • 中文刊名:HGYJ
  • 英文刊名:The Chinese Journal of Process Engineering
  • 机构:中国科学院过程工程研究所多相复杂系统国家重点实验室;中国科学院大学化学工程学院;
  • 出版日期:2018-12-07 17:31
  • 出版单位:过程工程学报
  • 年:2019
  • 期:v.19
  • 基金:国家自然科学基金资助项目(编号:51502291);; 国家自然基金资助项目(编号:51671180)
  • 语种:中文;
  • 页:HGYJ201903024
  • 页数:8
  • CN:03
  • ISSN:11-4541/TQ
  • 分类号:184-191
摘要
合成了碳化锆陶瓷有机前驱体,研究了其在热解过程中化学成分和物相组成变化,探讨了从有机高分子向无机陶瓷转化的机理,对碳热还原反应进行了热力学分析。结果表明,前驱体在600℃以下完成了有机结构的断裂、裂解碎片的重排与挥发,600℃以上裂解产物不再具备有机特征;随热解温度升高,无定型碳和单斜相ZrO2逐渐生成,大于1200℃时可检测到立方相ZrC,1400℃时单斜相ZrO2基本消失;1500℃时完成碳热还原反应,在远低于热力学反应温度的条件下生成了高度结晶的纳米尺寸的立方相碳化锆陶瓷。
        To meet the requirement of rapid development in near spacecraft, continuous research efforts have been focused on the antioxidation materials which can be applied in very harsh environmental conditions. Carbon fiber reinforced SiC matrix(C/SiC) composites have overall advantages including lower density, good mechanical performance, and strong anti-oxidation capability, etc. Therefore, it can be used as various aerospace structural materials. However, C/SiCcomposites can only endure the short-time use(1 000 s) when the temperature is lower than 1 800℃, and longer-time use below 1 600℃ in oxidizing environment. In this case, ZrC has been considered as a good candidate, owing to its melting point of 3 540℃. Adding ZrC could increase the anti-oxidation capability of C/SiC composites, and besides, preceramic polymer processing is a good way to obtain ceramic matrix composites at a relatively low temperature. Various precursors of ceramic have been synthesized, but very little systematic work has been done regarding to the pyrolysis mechanism of polymeric precursor to zirconium carbide ceramics. In this work, pyrolysis process of an organic polymeric precursor of zirconium carbide(PZC) was investigated, the conversion mechanism of the precursor to ceramics was studied in detail as well. The methodology involved the microstructure analysis and phase composition of products by FT-IR, XRF, TG-DSC, MS-online, XRD and SEM. Furthermore, thermodynamics of carbothermal reduction reaction was calculated as well. The results showed that there was the decomposition of PZC with the temperature up to 600 ℃, including the release of small-molecule gases, such as water vapor, carbon monoxide, carbon dioxide, methane, acetone, and tetrahydrofuran, which were formed from the rearrangement of pyrolysis species. Then the solid inorganic products of amorphous-free carbon and m-ZrO2 were formed with the temperature range from 600 ℃ to 1 200 ℃. Cubic ZrC crystalline in nano size can be formed above 1 300℃, via the carbothermal reduction reaction between carbon and m-ZrO2, and this temperature was lower than the temperature from thermodynamic calculations. The ceramization of PZC could be completed with temperature at 1 500℃, and the yield of ceramic was 33.45%.
引文
[1]Kontinos D,Gee K,Prabbu D.Temperature constraints at the sharp leading edge of a crew transfer vehicle[C]//AIAA Thermophysics Conference,Anaheim.2006:2828-2831.
    [2]闫联生,崔万继,崔红,等.超高温抗氧化碳陶复合材料研究进展[J].宇航材料工艺,2014,44(3):6-11.Yan L S,Cui W J,Cui H,et al.Advances on ultra-high temperature and oxidation resistance carbon-ceramic composites[J].Aerospace Materials and Technology,2014,44(3):6-11.
    [3]Li Q G,Zhou H Q,Dong S M,et al.Fabrication of a ZrC-SiC matrix for ceramic matrix composites and its properties[J].Ceramics International,2012,38(5):4379-4384.
    [4]Li H B,Zhang L T,Cheng L F,et al.Fabrication of 2D C/ZrC-SiCcomposite and its structural evolution under high-temperature treatment up to 1800℃[J].Ceramics International,2009,35(7):2831-2836.
    [5]黄传进,王明存,韩伟键,等.ZrC-SiC复相陶瓷先驱体的制备与性能[J].硅酸盐学报,2015,43(9):1177-1185.Huang C J,Wang M C,Han W J,et al.Preparation and properties of Zr C-SiC multi-phase ceramic precursors[J].Journal of the Chinese Ceramic Society,2015,43(9):1177-1185.
    [6]陈博,张立同,成来飞,等.3D C/SiC复合材料喷管在小型固体火箭发动机中的烧蚀规律研究[J].无机材料学报,2008,23(5):938-944.Chen B,Zhang L T,Cheng L F,et al.Ablation characteristic of 3DC/SiC composite nozzle in a small solid rocket motor[J].Journal of Inorganic Materials,2008,23(5):938-944.
    [7]张杰,魏鑫,郑力铭,等.C/SiC复合材料在空气中的氧化烧蚀[J].推进技术,2008,29(4):488-493.Zhang J,Wei X,Zheng L M,et al.Ablation of C/SiC composite in oxygen-rich gas[J].Journal of Propulsion Technology,2008,29(4):488-493.
    [8]马青松,刘海韬,刘卫东,等.C/SiC复合材料在超燃冲压发动机中的应用研究进展[J].无机材料学报,2013,28(3):247-255.Ma Q S,Liu H T,Liu W D,et al.Research progress on the application of C/SiC composites in scramjet[J].Journal of Inorganic Materials,2013,28(3):247-255.
    [9]武海棠,魏玺,于守泉,等.整体抗氧化C/C-ZrC-SiC复合材料的超高温烧蚀性能研究[J].无机材料学报,2011,26(8):852-856.Wu H T,Wei X,Yu S Q,et al.Ablation performances of multi-phased C/C-Zr C-SiC ultra-high temperature composites[J].Journal of Inorganic Materials,2011,26(8):852-856.
    [10]宋瑞颖,刘宁,张红芹,等.Zr C陶瓷的性能、制备及应用[J].硬质合金,2009,26(2):134-140.Song R Y,Liu N,Zhang H Q,et al.Properties,preparation and applications of zirconium carbide ceramics[J].Cemented Carbide,2009,26(2):134-140.
    [11]王少雷,李红,任慕苏,等.C/C-SiC复合材料的制备及其烧蚀性能[J].复合材料学报,2017,34(5):1040-1047.Wang S L,Li H,Ren M S,et al.Fabrication and ablation performances of Zr C-SiC-C/C composites[J].Acta Materiae Compositae Sinica,2017,34(5):1040-1047.
    [12]王其坤,胡海峰,郑文伟,等.C/C-SiC复合材料熔融渗硅制备工艺[J].材料导报,2005,19(7):93-96.Wang Q K,Hu H F,Zheng W W,et al.Liquid silicon infiltration process for C/C-SiC Composites[J].Materials Review,2005,19(7):93-96.
    [13]樊乾国,崔红,闫联生,等.浆料浸渍法制备C/C-SiC-Zr B2超高温复合材料及其烧蚀性能研究[J].无机材料学报,2013,28(9):1014-1018.Fan Q G,Cui H,Yan L S,et al.Ablation resistance properties of ultra-high temperature composites C/C-SiC-Zr B2 by slurry impregnation method[J].Journal of Inorganic Materials,2013,28(9):1014-1018.
    [14]马彦,马青松,陈朝辉.先驱体作粘结剂低温制备SiC多孔陶瓷[J].稀有金属材料与工程,2007,36(增刊1):531-533.Ma Y,Ma Q S,Chen C H.Low-temperature fabrication and characterization of porous SiC ceramics using preceramic polymer as binder[J].Rare Metal Materials and Engineering,2007,36(S1):531-533.
    [15]Tao X Y,Qiu W F,Li H,et al.New route to synthesize preceramic polymers for zirconium carbide[J].Chinese Chemical Letters,2012,23(9):1075-1078.
    [16]曹淑伟,谢征芳,王军,等.聚锆碳硅烷陶瓷先驱体的制备与表征[J].高分子学报,2008,1(4):621-625.Cao S W,Xie Z F,Wang J,et al.Synthesis and characterization of polyzirconocarbosilane precursor[J].Acta Polymerica Sinica,2008,1(4):621-625.
    [17]张伟刚,戈敏,魏玺.一种碳化锆和二硼化锆陶瓷有机前驱体材料及其制备方法:CN201110010110.2[P].2011-01-28.Zhang W G,Ge M,Wei X.Preparation of an organic polymeric precursor of zirconium carbide and zirconium diboride ceramics:CN201110010110.2[P].2011-01-28.
    [18]解静,李克智,付前刚,等.聚合物浸渍裂解法制备C/C-Zr C-Si C-ZrB2复合材料及其性能研究[J].无机材料学报,2013,28(6):605-610.Xie J,Li K Z,Fu Q G,et al.Preparation and properties of C/C-Zr C-SiC-ZrB2 composites via polymer infiltration and pyrolysis[J].Journal of Inorganic Materials,2013,28(6):605-610.
    [19]杨星,崔红,闫联生,等.陶瓷前驱体配比对C/C-Zr C-SiC复合材料烧蚀性能的影响[J].材料导报,2015,29(2):52-56.Yang X,Cui H,Yan L S,et al.Effects of ceramic precursor ratio on ablation properties of C/C-Zr C-SiC composites[J].Materials Review,2015,29(2):52-56.
    [20]Feng B,Li H J,Zhang Y L,et al.Effect of SiC/ZrC ratio on the mechanical and ablation properties of C/C-SiC-ZrC composites[J].Corrosion Science,2014,82(5):27-35.
    [21]王玲玲,嵇阿琳,崔红,等.ZrC改性C/C-SiC复合材料的力学和抗烧蚀性能[J].复合材料学报,2016,33(2):373-378.Wang L L,Ji A L,Cui H,et al.Mechanical and anti-ablative preformances of C/C-SiC composites modified by ZrC[J].Acta Materiae Compositae Sinica,2016,33(2):373-378.
    [22]刘丹,邱文丰,蔡涛,等.碳化锆液相陶瓷前驱体的制备及陶瓷化[J].宇航材料工艺,2014,44(1):79-83.Liu D,Qiu W F,Cai T,et al.Preparation and ceramization of liquid ZrC precursor[J].Aerospace Materials&Technology,2014,44(1):79-83.
    [23]叶大伦,胡建华.实用无机物热力学数据手册,第2版[M].北京:冶金工业出版社,2002:175,194-195,1200,1204.Ye D L,Hu J H.Handbook of thermodynamic data of practical inorganic substances,2nd Ed.[M].Beijing:Metallurgical Industry Press,2002:175,194-195,1200,1204.
    [24]陈明伟,邱海鹏,张伟刚.碳化锆有机前驱体陶瓷化过程研究[C]//第17届全国复合材料学术会议论文集.北京:北京中航时代文化传播有限公司,2012:936-939.Chen M W,Qiu H P,Zhang W G.Characterization and thermal decomposition process of Zr C ceramic organic precursor[C]//Proceedings of the 17th National Conference on Composite Materials.Beijing:Beijing Flights Culture Media Company,2012:936-939.
    [25]Sacks M D,Wang C A,Yang Z,et al.Carbothermal reduction synthesis of nanocrystalline zirconium carbide and hafnium carbide powders using solution-derived precursors[J].Journal of Materials Science,2004,39(19):6057-6066.
    [26]熊炳昆.锆铪及其化合物应用[M].北京:冶金工业出版社,2002:75-76.Xiong B K.Applications of zirconium and hafnium and their compounds[M].Beijing:Metallurgical Industry Press,2002:75-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700