用户名: 密码: 验证码:
3.4μm处NO_2吸收光谱特性及在差分吸收激光雷达中的应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Absorption Spectrum Characteristics of NO_2 near 3.4μm and Its Application in Differential Absorption Lidar
  • 作者:蔡镐泽 ; 卜令兵 ; 龚宇 ; 杨彬 ; 周军
  • 英文作者:CAI Hao-ze;BU Ling-bing;GONG Yu;YANG Bin;ZHOU Jun;Key Laboratory of Meteorological Disaster of Ministry of Education,Key Laboratory for Aerosol-CloudPrecipitation of China Meteorological Administration,Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters,School of Atmospheric Physics,Nanjing University of Information Science and Technology;Nanjing Institute of Advanced Laser Technology;
  • 关键词:光谱学 ; 大气光学 ; 差分吸收激光雷达 ; 二氧化氮 ; 吸收截面
  • 英文关键词:Spectroscopy;;Atmospheric optics;;Differential absorption lidar;;Nitrogen dioxide;;Absorption cross section
  • 中文刊名:GZXB
  • 英文刊名:Acta Photonica Sinica
  • 机构:南京信息工程大学大气物理学院气象灾害预警与评估协同创新中心中国气象局气溶胶-云-降水重点实验室气象灾害教育部重点实验室;南京先进激光技术研究院;
  • 出版日期:2019-05-14 08:51
  • 出版单位:光子学报
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金(No.41675133);; 江苏省自然科学基金(No.BE2015003-4)~~
  • 语种:中文;
  • 页:GZXB201907022
  • 页数:9
  • CN:07
  • ISSN:61-1235/O4
  • 分类号:207-215
摘要
为使中红外差分吸收激光雷达能够精确测量NO_2气体浓度,对NO_2在中红外波段的吸收光谱特性进行测量分析.采用光参量放大激光器的λon和光参量振荡激光器λoff两路激光分别进行吸收谱线测量实验.用谱线宽小于0.05nm的λon激光测量了NO_2气体在3 410~3 433nm的吸收光谱,计算得到其吸收截面,采集分析了NO_2在291K、308K、363K三个温度下的光谱特性,用谱线宽约为10nm的λoff激光采集了3 400~3 435nm的吸收谱线.测量结果表明,在3 410~3 433nm波段,温度和吸收截面值呈负相关,测量的谱线与HITRAN数据库相关系数达到0.92以上;针对λoff激光下的吸收谱线,采用了改进的卷积修正方法,测量结果和拟合结果相关系数为0.97.将实测的on和off波长处的吸收截面应用于使用该波长对的中红外差分吸收激光雷达仿真上,拟合差分吸收激光雷达系统浓度测量误差,验证了基于该波长对的差分吸收激光雷达方案的可行性.
        In order to accurately measure the concentration of NO_2 gas by mid-infrared differential absorption lidar,the absorption spectrum characteristics of NO_2 in mid-infrared band were measured and analyzed.The absorption cell experiments were conducted using two wavelengthsλonandλoffemitted from OPA lasers and OPO lasers respectively.The absorption cross section of NO_2 gas in the range of 3 410~3 433 nm is measured by a laserλonwhose spectral line-width is less than 0.05 nm.The absorption cross sections at 291 K,308 Kand 363 Kwere acquired respectively.And the absorption spectra from 3 400~3 435 nm were also acquired by a laserλoffwith spectral line-width being 10 nm.The experimental resultsshow that the absorption cross-section is negatively correlated with temperature in the range of 3 410~3 433 nm,consisted with HITRAN database and the correlation coefficient between the measured data and the HITRAN data is above 0.92.A new convolution correction method is used to calculate the absorption spectrum line under laserλoff.The correlation coefficient between the measured results and the fitting results is 0.97.The measured absorption cross sections at the on and off wavelengths are applied to the simulation of the mid-infrared differential absorption lidar,the concentration error of differential absorption lidar is simulated,which verified the feasibility of the scheme of differential absorption lidar.
引文
[1]PIKHART H,BOBAK M,KRIZ B,et al.Outdoor air concentrations of nitrogen dioxide and sulfur dioxide and prevalence of wheezing in school children[J].Epidemiology,2000,11(2):153-160.
    [2]KORTH H G.The pathobiochemistry of nitrogen dioxide[J].Biological Chemistry,2002,383(3-4):389-399.
    [3]SACHIN D G,R J VANDER A,BEIG G,et al.Satellite derived trends in NO2over the major global hotspot regions during the past decade and their inter-comparison[J].Environmental Pollution,2009,157(6):1873-1878.
    [4]TIAN G,MOOSMLLER H,ARNOTT W P.Influence of photolysis on multispectralphotoacoustic measurement of nitrogen dioxide concentration[J].Journal of the Air&Waste Management Association,2013,63(9):1091-1097.
    [5]ORPHAL J,DREHER S,VOIGT S,et al.The near-infrared bands of NO2observed by high-resolution Fouriertransform spectroscopy[J].Journal of Chemical Physics,1998,109(23):10217-10211.
    [6]LIN Wei-hao,GAO Zhi-hui,YANG Yong,et al.NO2detection based on laser spectrum differential method[J].Laser Technology,2014,38(6):835-838.
    [7]LIANG Mei,PENG Guan,ZHENG Kong.Remotesensing of atmospheric NO2 by employing the continuous-wave differential absorption lidar technique[J].Optics Express,2017,25(20):A953.
    [8]KOLSCH H J,RAIROUX P,WOLF J P,et al.Simultaneous NO and NO2DIAL measurement using BBO crystals[J].Applied Optics,1989,28(11):2052-2056.
    [9]TORIUMI R,TAI H,TAKEUCHI N.Tunable solid-state blue laser differential absorption lidar system for NO2monitoring[J].Optical Engineering,1996,35(8):2371-2375.
    [10]CELARIER E A,BRINKSMA E J,GLEASON J F,et al.Validation of ozone monitoring instrument nitrogen dioxide columns[J].Journal of Geophysical Research,2008,113(D15):D15S15.
    [11]LIU Zun-yang,BIAN Jin-tian,SHAO Li,et al.Progress of mid infrared laser technology[J].Laser and Infrared,2013,43(8):853-858.刘尊洋,卞进田,邵立,等.中红外激光技术研究进展[J].激光与红外,2013,43(8):853-858.
    [12]YI Hong-ming,LIU Kun,CHEN Wei-dong,et al.Application of a broadband blue laser diode to trace NO2detection using off-beam quartz-enhanced photoacoustic spectroscopy[J].Optics Letters,2011,36(4):481-483.
    [13]CUI Hou-xin,DU Zhen-hui,CHEN Wen-liang,et al.Effect of temperature on the absorption cross-section of NO2in410~440nm Wavelength[J].Journal of Tianjin University,2008,41(10):1162-1166.崔厚欣,杜振辉,陈文亮,等.NO2吸收截面在410~440nm波段内的温度特性[J].天津大学学报:自然科学与工程技术版,2008,41(10):1162-1166.
    [14]SA Ri-na,BU Ling-bing,WANG Qin,et al.Spectral characteristics of polluted gases and their detection by midinfrared differential absorption lidar[J].Optik,2017,149:113-124.
    [15]XU Ling,BU Ling-bing,CAI Hao-ze,et al.Wavelength selection and detection capability simulation of the midinfrared DIAL for NO2detecion[J].Laser and Infrared,2018,47(10):77-84.徐玲,卜令兵,蔡镐泽,等.中红外差分吸收激光雷达NO2测量波长选择及探测能力模拟[J].红外与激光工程,2018,47(10):77-84.
    [16]QI Ru-bin,HAO Shu-kai,LI Xin-tian,et al.Simulation of TDLAS direct absorption based on HITRAN database[J].Spectroscopy and Spectral Analysis,2015,35(1):172-177.齐汝宾,赫树开,李新田,等.基于HITRAN光谱数据库的TDLAS直接吸收信号仿真研究[J].光谱学与光谱分析,2015,35(1):172-177.
    [17]CHEN Ya-feng,WANG Xiao-bin,LIU Qiu-wu,et al.Mobile SO2 Differential absorption lidar system[J].Acta Photonica Sinica,2017,46(7):0701004.陈亚峰,王晓宾,刘秋武,等.车载二氧化硫差分吸收激光雷达系统[J].光子学报,2017,46(7):0701004.
    [18]ZHU Xiang-fei,LIN Zhao-xiang,LIU Lin-mei,et al.Influence of temperature and pressure on absorption spectrum of around 1.6μm for differential absorption lidar[J].Acta Physica Sinica,2014,63(17):153-159.朱湘飞,林兆祥,刘林美,等.温度压强对CO2吸收光谱的影响[J].物理学报,2014,63(17):153-159.
    [19]CARON J,DURAND Y,BEZY J L,et al.Performance modeling for A-SCOPE:a space-borne lidar measuring atmospheric CO2[C].SPIE,2009.
    [20]CARON J,DURAND Y.Operating wavelengths optimization for a spaceborne lidar measuring atmospheric CO2[J].Applied Optics,2009,48(28):5413-5422.
    [21]LIU Hao.Research on differential absorption lidar for CO2sensing[D].Shanghai:Shanghai Institute of Technical Physics,2015.刘豪.大气二氧化碳探测差分吸收激光雷达技术研究[D].上海:上海技术物理研究所,2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700