用户名: 密码: 验证码:
大型LNG接收站泄漏事故灾害效应分析与预测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis and prediction on the disaster effect of leakage accidents at large LNG receiving stations
  • 作者:王志寰 ; 李成兵 ; 周宁
  • 英文作者:Wang Zhihuan;Li Chengbing;Zhou Ning;School of Mechanical Engineering, Southwest Petroleum University;School of Petroleum Engineering, Changzhou University;
  • 关键词:液化天然气 ; 接收站 ; 泄漏 ; 可燃气云 ; 扩散 ; 爆炸 ; 灾害效应 ; FLACS ; 三维预测模型
  • 英文关键词:Liquefied natural gas (LNG);;Receiving station;;Leakage;;Flammable gas cloud;;Diffusion;;Explosion;;Disaster effect;;FLACS;;3D prediction model
  • 中文刊名:TRQG
  • 英文刊名:Natural Gas Industry
  • 机构:西南石油大学机电工程学院;常州大学石油工程学院;
  • 出版日期:2019-05-25
  • 出版单位:天然气工业
  • 年:2019
  • 期:v.39;No.307
  • 基金:国家重点研发计划项目“特种消防产品关键技术研究及应用示范”(编号:2017YFC0806602)
  • 语种:中文;
  • 页:TRQG201905022
  • 页数:9
  • CN:05
  • ISSN:51-1179/TE
  • 分类号:151-159
摘要
LNG接收站的储运介质主要是液化天然气,由于其具有易泄漏、易挥发扩散等特性,泄漏形成的可燃蒸气云团有可能引发火灾爆炸等严重后果,分析并预测接收站LNG泄漏事故产生的灾害效应,可以为LNG接收站选址、布局设计和事故灾害预防提供参考。为此,利用FLACS软件,根据国内某大型LNG接收站的现场布局建立LNG泄漏扩散三维预测模型,采用相对偏差率对不同风速、风向和围堰高度条件下的LNG泄漏扩散行为进行分析与评价,预测了接收站LNG泄漏事故产生的灾害效应。研究结果表明:①在300 s的扩散时间内,LNG泄漏扩散呈现重力沉降特点;②定量分析了泄漏点位置对国内某拥有5个储罐的大型接收站LNG泄漏与扩散效应的影响,确定3号储罐泄漏造成的灾害效应影响最大;③围堰高度对LNG气云爆炸灾害效应的影响最大,其次为风速和风向,而风向对LNG气云窒息灾害效应的影响最大,其次为围堰高度和风速;④发生泄漏事故意外点火爆炸,热辐射死亡最大半径为170.1 m,三度烧伤最大半径为213.7 m,二度烧伤最大半径为261.7 m,一度烧伤最大半径为370.1 m,其气云团覆盖的范围基本是死亡区,人员重伤死亡。
        Liquefied natural gas(LNG) is a major storage and transportation medium at LNG receiving stations. LNG leaks, volatilizes and diffuses easily, and the flammable vapor cloud derived from its leakage may lead to serious consequences, e.g. fire and explosion.Therefore, analyzing and predicting the disaster effect of LNG leakage at LNG receiving stations can provide reference for the site selection, layout design and disaster prevention of LNG receiving stations. In this paper, a 3 D prediction model for LNG leakage and diffusion was established based on the field layout of one domestic large LNG receiving station by using the FLACS. Then, the LNG leakage and diffusion behaviors at different wind speeds, wind directions and cofferdam heights were analyzed and evaluated by virtue of relative deviation ratios. Finally, the disaster effect of LNG leakage at the LNG receiving station was predicted. And the following research results were obtained. First, in the diffusion time interval of 300 s, LNG leakage and diffusion presents the characteristics of gravity settling.Second, the effects of leakage positions at the LNG receiving station on the LNG leakage and diffusion are quantitatively analyzed, and it is determined that the disaster effect caused by the leakage of No.3 tank is the maximum. Third, as for the disaster effect of LNG cloud explosion, cofferdam height is the most influential factor, and wind speed and wind direction take the second place. As for the disaster effect of LNG cloud choke, however, wind direction is the most influential factor, and cofferdam height and wind speed take the second place. In the accident of leakage explosion, the maximum death radius of thermal radiation is 170.1 m, the maximum radius of third-degree burn is 213.7 m, the maximum radius of second-degree burn is 261.7 m, and the maximum radius of first-degree burn is 370.1 m.The area covered by the vapor cloud is basically a death zone, where people are seriously injured and dead.
引文
[1]高文晓.液化天然气(LNG)储运安全问题与发展前景研究[J].石化技术,2018,25(5):68-69.Gao Wenxiao.Safety and development prospect of liquefied natural gas(LNG)storage and transportation[J].Petrochemical Industry Technology,2018,25(5):68-69.
    [2]曹广明.LNG接收站事故统计分析研究[J].安全健康和环境,2014,14(7):9-11.Cao Guangming.Accident statistics and analysis of LNG Terminal[J].Safety Health and Environment,2014,14(7):9-11.
    [3]张爱利.LNG储罐工程安全分析与评价[D].天津:天津工业大学,2016.Zhang Aili.Safety analysis and evaluation of LNG tank engineering[D].Tianjin:Tianjin Polytechnic University,2016.
    [4]祁云清.液化天然气接收站风险评价方法研究[D].成都:西南石油大学,2015.Qi Yuqing.The study of risk assessment method of liquefied natural gas[D].Chengdu:Southwest Petroleum University,2015.
    [5]王洪丽,刘晓宇,海热提·涂尔逊.LNG接收站泄漏事故最大风险预测[J].环境科学研究,2006,19(2):108-111.Wang Hongli,Lu Xiaoyu&Tursun H.Highest risk forecast of LNG receiving station leaking accident[J].Research of Environmental Sciences,2006,19(2):108-111.
    [6]柴田.大鹏湾液化天然气码头风险评价的研究[D].大连:大连海事大学,2006.Chai Tian.Risk assessment research of the LNG terminal in Dapeng Bay[D].Dalian:Dalian Maritime University,2006.
    [7]周彦波,黄俊,鲁军.液化天然气泄漏与扩散的安全性分析[J].天然气工业,2007,27(1):131-133.Zhou Yanbo,Huang Jun&Lu Jun.Security analysis on LNGleakage and diffusion[J].Natural Gas Industry,2007,27(1):131-133.
    [8]曾岳梅.LNG接收站爆燃分析及其保护层风险研究[D].青岛:中国石油大学,2014.Zeng Yuemei.Research on deflagration risk and LOPA for LNGreceiving stations[D].Qingdao:China University of Petroleum,2014.
    [9]Brown TC,Cederwall BT,Chan ST,Ermak DL,Lamson KC,Ermak DL,et al.Falcon series data report:1987 LNG vapor barrier verification field trials[R].Oakland:University of California,1990.
    [10]Hansen OR,Gavelli F,Ichard M&Davis SG.Validation of flacs against experimental data sets from the model evaluation database for LNG vapor dispersion[J].Journal of Loss Prevention in the Process Industries,2010,23(6):857-877.
    [11]Filippo Gavelli&Melissa K.Quantification of source-level turbulence during LNG spills onto a water pond[J].Journal of Loss Prevention in the Process Industries,2009,22(6):809-819.
    [12]Hanna SR.Hazardous gas model evaluation with field observations[J].Atmospheric Environment.Part A.General Topics,1993,27(15):2265-2285.
    [13]袁中立,闫伦江.LNG低温储罐的设计及建造技术[J].石油工程建设,2007,33(5):19-22.Yuan Zhongli&Yan Lunjiang.Low temperature LNG storage tank design and construction technology[J].Petroleum Engineering Construction,2007,33(5):19-22.
    [14]喻闯闯,罗天培,刘瑞敏,曲胜,张家仙,赵耀中.火箭发动机试验台中低温甲烷的安全排放研究综述[J].宇航学报,2017,38(10):1013-1023.Yu Chuangchuang,Luo Tianpei,Liu Ruimin,Qu Sheng,Zhang Jiaxian&Zhao Yaozhong.Review of studies on emission of cryogenic methane at rocket engine test bench[J].Journal of Astronautics,2017,38(10):1013-1023.
    [15]Sklavounos S&Rigas F.Simulation of Coyote series trials-Part I:CFD estimation of non-isothermal LNG releases and comparison with box-model predictions[J].Chemical Engineering Science,2006,61(5):1434-1443.
    [16]李雪.液化天然气泄漏扩散过程数值模拟[D].大连:大连理工大学,2015.Li Xue.Numerical simulation of leakage diffusion process of liquefied natural gas[D].Dalian:Dalian University of Technology,2015.
    [17]姚安林,周立国,汪龙,王棠昱,李又绿.天然气长输管道地区等级升级管理与风险评价[J].天然气工业,2017,37(1):124-130.Yao Anlin,Zhou Liguo,Wang Long,Wang Tangyu&Li Youlü.Management of and risk evaluation on long-distance gas pipelines related to regional level upgrading[J].Natural Gas Industry,2017,37(1):124-130.
    [18]秦政先.天然气管道泄漏扩散及爆炸数值模拟研究[D].成都:西南石油大学,2007.Qin Zhengxian.The study of numerical simulation of gas pipeline leakage diffusion and explosion[D].Chengdu:Southwest Petroleum University,2007.
    [19]陈国华,吴家俊.地下密闭空间燃气爆炸冲击波传播规律[J].天然气工业,2017,37(2):120-125.Chen Guohua&Wu Jiajun.Propagation laws of gas explosion shock waves in underground confined space[J].Natural Gas Industry,2017,37(2):120-125.
    [20]王俊清.LNG泄漏扩散规律及危险浓度区域研究[D].济南:山东建筑大学,2017.Wang Junqing.The study of LNG leakage diffusion rules and dangerous concentrations area[D].Jinan:Shandong Jianzhu University,2017.
    [21]Baker WE,Cox PA,Kulesz JJ,Strehlow RA,Westine PS.Explosion hazards and evaluation[D].Amsterdam:Elsevier,1983.
    [22]Huang Jianping,Li Chuang,Wang Rongrong&Li Qingyang.Plane-Wave least-squares reverse time migration for rugged topography[J].Journal of Earth Science,2015,26(4):471-480.
    [23]宇德明,冯长根,徐志胜,曾庆轩,郭新亚.炸药爆炸事故冲击波、热辐射和房屋倒塌的伤害效应[J].兵工学报,1998,19(1):33-37.Yu Deming,Feng Changgen,Xu Zhisheng,Zeng Qingxuan&Guo Xinya.Blast wave,thermal radiation and damage effects of building collapse in the explosion accidents[J].Acta Armamentarii,1998,19(1):33-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700