用户名: 密码: 验证码:
植物铁还原酶基因FRO的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress of Fe~(3+) Reductase Genes (FRO) in Plants
  • 作者:乔孟欣 ; 李素贞 ; 陈景堂
  • 英文作者:QIAO Meng-xin;LI Su-zhen;CHEN Jing-tang;Department of Agronomy,Agricultural University of Hebei/Hebei Sub-center of National Maize Improvement Center/Key Laboratory for Crop Germplasm Resources of Hebei;
  • 关键词: ; 铁还原酶 ; 铁还原酶基因
  • 英文关键词:iron;;Fe~(3+) chelate reductase;;FRO
  • 中文刊名:SWJT
  • 英文刊名:Biotechnology Bulletin
  • 机构:河北农业大学农学院国家玉米改良中心河北分中心河北省作物种质资源实验室;
  • 出版日期:2019-03-22 11:13
  • 出版单位:生物技术通报
  • 年:2019
  • 期:v.35;No.324
  • 基金:国家自然科学基金项目(31671768)
  • 语种:中文;
  • 页:SWJT201907023
  • 页数:10
  • CN:07
  • ISSN:11-2396/Q
  • 分类号:167-176
摘要
铁(Fe)是植物生长必需的微量元素,适宜的铁含量有利于植物的正常生长和发育。在吸收铁这一生理过程中,禾本科植物和非禾本科植物吸收铁的价态不同,并且铁在植物体内的运输过程也存在着二价与三价铁的相互转化。铁还原酶基因(Fe~(3+)chelate reductase,FRO)具有将三价铁还原成二价铁的功能。因此,在分子水平上研究FRO的具体功能具有非常重要的意义。综述了拟南芥、番茄、大豆、水稻、花生及蒺藜苜蓿等FRO基因在亚细胞定位、还原对象、诱导条件及调控或影响因素等方面的研究进展,以期为后续研究铁的吸收机制奠定理论基础。
        Fe is an essential microelement for plants' growth,and the appropriate iron content is beneficial to the normal growth and development of plants. In terms of the physiological process of absorbing iron,the monocotyledon plants and the non-monocotyledon plants are different in valence state,and the transformation between Fe~(2+) and Fe~(3+) exists in the transport process of iron in plants. Fe~(3+) chelate reductase gene FRO have the function of reducing Fe~(3+) to Fe~(2+),thus it is of great significance to study the specific function and regulation mechanism of FRO at the molecular level. In this paper,subcellular localization,reduction objects,induction conditions of FRO in Arabidopsis thaliana,tomato,soybean,rice,peanut and Tribulus terrestris are reviewed aiming at providing a theoretical basis for studying Fe uptake mechanism.
引文
[1]Hanke GT, Kimata-Ariga Y, Taniguchi I, et al. A post genomic characterization of Arabidopsis ferredoxins[J]. Plant Physiology,2004, 134(1):255-264.
    [2]Halliwell B, Gutteridge JM. Biologically relevant metal iondependent hydroxyl radical generation. An update[J]. Febs Letters, 1992, 307(1):108-112.
    [3]Guerinot ML, Ying Yi. Iron:Nutritious, noxious, and not readily available[J]. Plant Physiology, 1994, 104(3):815-820.
    [4]Eide D, Broderius M, Fett J, et al. A novel iron-regulated metal transporter from plants identified by functional expression in yeast[J]. Proc Natl Acad Sci USA, 1996, 93(11):5624-5628.
    [5]Robinson NJ, Procter CM, Connolly EL, et al. A ferric-chelate reductase for iron uptake from soils[J]. Nature, 1999, 397(6721):694-697.
    [6]Schagerlof U, Wilson G, Hebert H, et al. Transmembrane topology of FRO2, a ferric chelate reductase from Arabidopsis thaliana[J].Plant Mol Biol, 2006, 62(1/2):215-221.
    [7]Connolly EL, Campbell NH, Grotz N, er al. Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control[J]. Plant Physiology,2003, 133(3):1102-1110.
    [8]Vasconcelos MW, Clemente TE, Grusak MA. Evaluation of constitutive iron reductase(AtFRO2)expression on mineral accumulation and distribution in soybean(Glycine max L.)[J].Front Plant Sci, 2014, 5:112.
    [9]Einset J, Winge P, Bones AM, et al. The FRO2 ferric reductase is required for glycine betaine’s effect on chilling tolerance in Arabidopsis roots[J]. Physiologia Plantarum, 2008, 134(2):334-341.
    [10]WuH,LiLH,DuJ,etal.Molecularandbiochemical characterization of the Fe(III)chelate reductase gene family in Arabidopsis thaliana[J]. Plant Cell Physiol, 2005, 46(9):1505-1514.
    [11]Sivitz A, Grinvalds C, Barberon M, et al. Proteasome-mediated turnover of the transcriptional activator FIT is required for plant iron-deficiency responses[J]. Plant J, 2011, 66(6):1044-1052.
    [12]Mai HJ, Pateyron S, Bauer P. Iron homeostasis in Arabidopsis thaliana:transcriptomic analyses reveal novel FIT-regulated genes,irondeficiencymarkergenesandfunctionalgene networks[J]. BMC Plant Biology, 2016, 16(1):211.
    [13]Colangelo EP, Guerinot ML. The essential basic helix-loop-helix protein FIT1 is required for the iron deficiency response[J]. The Plant Cell, 2004, 16(12):3400-3412.
    [14]Brumbarova T, Bauer P, Ivanov R. Molecular mechanisms governing Arabidopsis iron uptake[J]. Trends Plant Sci, 2015,20(2):124-133.
    [15]Garcia MJ, Suarez V, Romera FJ, et al. A new model involving ethylene, nitric oxide and Fe to explain the regulation of Feacquisition genes in Strategy I plants[J]. Plant Physiol Biochem,2011, 49(5):537-544.
    [16]Lucena C, Romera FJ, Garcia MJ, et al. Ethylene participates in the regulation of Fe deficiency responses in strategy I plants and in rice[J]. Front Plant Sci, 2015, 6:1056.
    [17]Wild M, Davière JM, Regnault T, et al. Tissue-specific regulation of gibberellin signaling fine-tunes Arabidopsis iron-deficiency responses[J]. Developmental Cell, 2016, 37(2):190-200.
    [18]Garcia MJ, Garcia-Mateo MJ, Lucena, C, et al. Hypoxia and bicarbonate could limit the expression of iron acquisition genes in Strategy I plants by affecting ethylene synthesis and signaling in different ways[J]. Physiologia Plantarum, 2014, 150(1):95-106.
    [19]Shanmugam V, Wang YW, Tsednee M, et al. Glutathione plays an essential role in nitric oxide-mediated iron-deficiency signaling and iron-deficiency tolerance in Arabidopsis[J]. Plant J, 2015, 84(3):464-477.
    [20]Satbhai SB, Setzer C, Freynschlag F, et al. Natural allelic variation of FRO2 modulates Arabidopsis root growth under iron deficiency[J]. Nature Communications, 2017, 8:15603.
    [21]Bernal M, Casero D, Singh V, et al. Transcriptome sequencing identifies SPL7-regulated copper acquisition genes FRO4/FRO5andthecopperdependenceofironhomeostasisin Arabidopsis[J]. The Plant Cell, 2012, 24(2):738-761.
    [22]Yamasaki H, Hayashi M, Fukazawa M, et al. SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis[J]. The Plant Cell, 2009, 21(1):347-361.
    [23]Gielen H, Remans T, Vangronsveld J, et al. Toxicity responses of Cu and Cd:the involvement of miRNAs and the transcription factor SPL7[J]. BMC Plant Biology, 2016, 16(1):145.
    [24]Rellan-Alvarez R, Giner-Martínez-Sierra J, Orduna J, et al.Identification of a tri-iron(III), tri-citrate complex in the xylem sap of iron-deficient tomato resupplied with iron:new insights into plant iron long-distance transport[J]. Plant Cell Physiol, 2010,51(1):91-102.
    [25]Gayomba SR, Zhai Z, Jung HI, et al. Local and systemic signaling of iron status and its interactions with homeostasis of other essential elements[J]. Front Plant Sci, 2015, 6:716.
    [26]Mukherjee I, Campbell NH, Ash JS, et al. Expression profiling of the Arabidopsis ferric chelate reductase(FRO)gene family reveals differential regulation by iron and copper[J]. Planta,2006, 223(6):1178-1190.
    [27]Lopez-Millan AF, Duy D, Philippar K. Chloroplast iron transport proteins-function and impact on plant physiology[J]. Front Plant Sci, 2016, 7:178.
    [28]Feng HZ, An FY, Zhang SZ, et al. Light-regulated, tissue-specific,and cell differentiation-specific expression of the Arabidopsis Fe(III)-chelate reductase gene AtFRO6[J]. Plant Physiology,2006, 140(4):1345-1354.
    [29]Jeong J, Cohu C, Kerkeb L, et al. Chloroplast Fe(III)chelate reductase activity is essential for seedling viability under iron limiting conditions[J]. Proc Natl Acad Sci USA, 2008, 105(30):10619-10624.
    [30]Jain A, Wilson GT, Connolly EL. The diverse roles of FRO family metalloreductases in iron and copper homeostasis[J]. Front Plant Sci, 2014, 5:100.
    [31]Li LY, Cai QY, Yu DS, et al. Overexpression of AtFRO6 in transgenic tobacco enhances ferric chelate reductase activity in leaves and increases tolerance to iron-deficiency chlorosis[J].Mol Biol Rep, 2011, 38(6):3605-3613.
    [32]Jain A, Connolly EL. Mitochondrial iron transport and homeostasis in plants[J]. Front Plant Sci, 2013, 4:348.
    [33]Jeong J, Connolly EL. Iron uptake mechanisms in plants:Functions of the FRO family of ferric reductases[J]. Plant Science, 2009, 176(6):709-714.
    [34]Long TA, Tsukagoshi H, Busch W, et al. The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots[J]. The Plant Cell, 2010, 22(7):2219-2236.
    [35]Ling HQ, Bauer P, Bereczky Z, et al. The tomato fer gene encoding a b HLH protein controls iron-uptake responses in roots[J]. Proc Natl Acad Sci USA, 2002, 99(21):13938-13943.
    [36]Du J, Huang ZA, Wang B, et al. SlbHLH068 interacts with FER to regulate the iron-deficiency response in tomato[J]. Annals of Botany, 2015, 116(1):23-34.
    [37]Li LH, Cheng XD, Ling HQ. Isolation and characterization of Fe(III)-chelate reductase gene LeFRO1 in tomato[J]. Plant Molecular Biology, 2004, 54(1):125-136.
    [38]Zamboni A, Zanin L, Tomasi N, et al. Early transcriptomic response to Fe supply in Fe-deficient tomato plants is strongly influenced by the nature of the chelating agent[J]. BMC Genomics, 2016, 17:35.
    [39]Zamboni A, Zanin L, Tomasi N, et al. Genome-wide microarray analysis of tomato roots showed defined responses to iron deficiency[J]. BMC Genomics, 2012, 13:101.
    [40]Paolacci AR, Celletti S, Catarcione G, et al. Iron deprivation results in a rapid but not sustained increase of the expression of genes involved in iron metabolism and sulfate uptake in tomato(Solanum lycopersicum L.)seedlings[J]. Journal of Integrative Plant Biology, 2014, 56(1):88-100.
    [41]Kong DY, Chen CL, Wu HL, et al. Sequence diversity and enzyme activity of ferric-chelate reductase LeFRO1 in tomato[J]. Journal of Genetics and Genomics, 2013, 40(11):565-573.
    [42]Prasad PVV. NUTRITION_Iron Chlorosis[M]. Encyclopedia of Applied Plant Sciences, 2003:649-656.
    [43]Santos CS, Roriz M, Carvalho SM, et al. Iron partitioning at an early growth stage impacts iron deficiency responses in soybean plants(Glycine max L.)[J]. Front Plant Sci, 2015, 6:325.
    [44]Qiu W, Dai J, Wang NQ, et al. Effects of Fe-deficient conditions on Fe uptake and utilization in P-efficient soybean[J]. Plant Physiol Biochem, 2017, 112:1-8.
    [45]Ishimaru Y, Suzuki M, Tsukamoto T, et al. Rice plants take up iron as an Fe3+-phytosiderophore and as Fe2+[J]. Plant J, 2006, 45(3):335-346.
    [46]Finatto T, de Oliveira AC, Chaparro C, et al. Abiotic stress and genome dynamics:specific genes and transposable elements response to iron excess in rice[J]. Rice, 2015, 8:13.
    [47]Pereira MP, Santos C, Gomes A, et al. Cultivar variability of iron uptake mechanisms in rice(Oryza sativa L.)[J]. Plant Physiol and Biochemistry, 2014, 85:21-30.
    [48]Li Q, Yang A, Zhang WH. Efficient acquisition of iron confers greater tolerance to saline-alkaline stress in rice(Oryza sativa L.)[J]. Journal of Experimental Botany, 2016, 67(22):6431-6444.
    [49]Kobayashi T, Nakanishi IR, Nishizawa NK. Iron deficiency responses in rice roots[J]. Rice, 2014, 7(1):27.
    [50]Cheng LJ, Wang F, Shou HX, et al. Mutation in nicotianamine aminotransferase stimulated the Fe(II)acquisition system and led to iron accumulation in rice[J]. Plant Physiology, 2007, 145(4):1647-1657.
    [51]Ricachenevsky FK, Sperotto RA. There and back again, or always there? The evolution of rice combined strategy for Fe uptake[J]. Front Plant Sci, 2014, 5:189.
    [52]Sun HW, Feng F, Liu J, et al. The interaction between auxin and nitric oxide regulates root growth in response to iron deficiency in rice[J]. Front Plant Sci, 2017, 8:2169.
    [53]Santos RS, Araujo AT, Pegoraro C, et al. Dealing with iron metabolism in rice:from breeding for stress toleranceto biofortification[J]. Genetics and Molecular Biology, 2017, 40(1):312-325.
    [54]Ishimaru Y, Kim S, Tsukamoto T, et al. Mutational reconstructed ferric chelate reductase confers enhanced tolerance in rice to iron deficiency in calcareous soil[J]. Proc Natl Acad Sci USA, 2007,104(18):7373-7378.
    [55]Masuda H, Shimochi E, Hamada T, et al. A new transgenic rice line exhibiting enhanced ferric iron reduction and phytosiderophore production confers tolerance to low iron availability in calcareous soil[J]. PLoS One, 2017, 12(3):e0173441.
    [56]Ding H, Duan LH, Wu HL, et al. Regulation of AhFRO1, an Fe(III)-chelate reductase of peanut, during iron deficiency stress and intercropping with maize[J]. Physiologia Plantarum, 2009,136(3):274-283.
    [57]Ding H, Duan LH, Li J, et al. Cloning and functional analysis of the peanut iron transporter AhIRT1 during iron deficiency stress and intercropping with maize[J]. Journal of Plant Physiology, 2010,167(12):996-1002.
    [58]Xiong H, Shen H, Zhang L, et al. Comparative proteomic analysis for assessment of the ecological significance of maize and peanut intercropping[J]. Journal of Proteomics, 2013, 78:447-460.
    [59]Guo XT, Xiong HC, Shen HY, et al. Dynamics in the rhizosphere and iron-uptake gene expression in peanut induced by intercropping with maize:role in improving iron nutrition in peanut[J]. Plant Physiol Biochem, 2014, 76:36-43.
    [60]Andaluz S, Rodriguez-Celma J, Abadia A, et al. Time course induction of several key enzymes in Medicago truncatula roots in response to Fe deficiency[J]. Plant Physiol Biochem, 2009, 47(11/12):1082-1088.
    [61]Del C orozco-Mosqueda M, Santoyo G, Farías-Rodríguez R, et al.Identification and expression analysis of multiple FRO gene copies in Medicago truncatula[J]. Genetics and Molecular Research,2012, 11(4):4402-4410.
    [62]Toledo-Ortiz G. The Arabidopsis basic/helix-loop-helix transcription factor family[J]. The Plant Cell, 2003, 15(8):1749-1770.
    [63]Yuan Y, Wu HL, Wang N, et al. FIT interacts with AtbHLH38and AtbHLH39 in regulating iron uptake gene expression for iron homeostasis in Arabidopsis[J]. Cell Research, 2008, 18(3):385-397.
    [64]Wang N, Cui Y, Liu Y, et al. Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana[J]. Molecular Plant, 2013, 6(2):503-513.
    [65]Zhang J, Liu B, Li MS, et al. The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis[J]. Plant Cell, 2015,27(3):787-805.
    [66]Li SZ, Zhou XJ, Li HB, et al. Overexpression of ZmIRT1 and ZmZIP3 enhances iron and zinc accumulation in transgenic Arabidopsis[J]. PLoS One, 2015, 10(8):e0136647.
    [67]Li SZ, Zhou XJ, Huang YQ, et al. Identification and characterization of the zinc-regulated transporters, iron-regulated transporter-like protein(ZIP)gene family in maize[J]. BMC Plant Biology,2013, 13(1):114.
    [68]Zanin L, Venuti S, Zamboni A, et al. Transcriptionaland physiological analyses of Fe deficiency response in maize reveal the presence of Strategy I components and Fe/P interactions[J].BMC Genomics, 2017, 18(1):154.
    [69]Li SZ, Zhou XJ, Chen JT, et al. Is there a strategy I iron uptake mechanism in maize?[J]. Plant Signal Behavior, 2018, 13(4):e1161877.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700