用户名: 密码: 验证码:
Fe_3O_4/GO对水溶液中Cd(Ⅱ)去除的影响因素
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influencing factors of Cd(Ⅱ) removal from aqueous solution by Fe_3O_4/GO
  • 作者:吴先亮 ; 黄先飞 ; 张珍明
  • 英文作者:WU Xian-liang;HUANG Xian-fei;ZHANG Zhen-ming;Guizhou Provincial Key Laboratory Information System of Mountainous Areas and Protection of Ecological Environment, Guizhou Normal University;Institute of Biology, Guizhou Academy of Sciences;
  • 关键词:Cd(Ⅱ) ; 四氧化三铁负载氧化石墨烯 ; 单因素实验 ; 响应面法 ; 人工神经网络-遗传算法
  • 英文关键词:Cd(Ⅱ);;graphene oxide-supported ferroferric oxide;;single factor experiments;;response surface methodology;;artificial neural network-genetic algorithm
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:贵州师范大学贵州省山地环境信息系统与生态环境重点实验室;贵州科学院贵州省生物研究所;
  • 出版日期:2019-06-20
  • 出版单位:中国环境科学
  • 年:2019
  • 期:v.39
  • 基金:贵州师范大学博士科研项目(GZNUD[2017]11);; 贵州省科技厅联合基金(LH[2016]7203);; 贵州省区域内一流学科建设项目-公共卫生与预防医学(黔教科研发2017[85]号);; 贵州省科技创新团队项目(QKH-RCTD(2015)4012)
  • 语种:中文;
  • 页:ZGHJ201906023
  • 页数:11
  • CN:06
  • ISSN:11-2201/X
  • 分类号:173-183
摘要
为探索高效且快速去除水溶液中Cd(Ⅱ)污染方法,采用自制磁性四氧化三铁负载氧化石墨烯(Fe_3O_4/GO)纳米复合材料对水溶液中Cd(Ⅱ)进行去除,利用单因素实验确定影响因素水平范围(初始Cd(Ⅱ)浓度、温度、反应时间、初始pH值),并采用响应面法(RSM)及人工神经网络-遗传算法(ANN-GA)对去除水溶液中Cd(Ⅱ)的影响因素(4因素3水平)进行优化,利用等温吸附、动力学及热力学参数研究吸附剂性能.通过扫描电子显微镜(SEM)、X射线衍射仪及超导量子干涉器件(SQUID)对复合材料表征.结果表明,平均粒径为30.9nm的磁性Fe_3O_4/GO纳米复合材料被成功制备.RSM用于磁性Fe3O4/GO纳米复合材料对水溶液中Cd(Ⅱ)去除条件优化,预测去除率达到86.451%,验证试验为82.220%,对应条件:温度为20.14℃,反应时间为57.78min,初始pH值为6.41和初始Cd(Ⅱ)浓度为11.18mg/L; ANN-GA优化条件后的预测去除率为89.722%,验证试验为87.723%,相应条件:温度为29.96℃,pH值为5.49,初始Cd(Ⅱ)浓度为28.36mg/L,反应时间为65.78min.根据模型R2值,预测的最大去除率及验证试验,ANN-GA模型性能及预测能力均高于RSM.RSM方差分析表明4个因素对磁性Fe_3O_4/GO纳米复合材料去除水溶液中Cd(Ⅱ)的影响大小为:初始Cd(Ⅱ)浓度>温度>反应时间>pH值.吸附机理分析结果显示,Fe_3O_4/GO纳米复合材料对Cd(Ⅱ)吸附过程同时存在着物理吸附和化学吸附.结合ANN-GA优化,利用磁铁实现且快速分离,磁性Fe_3O_4/GO纳米复合材料用于去除Cd(Ⅱ)是可行的.
        To explore efficient and rapid method for removing Cd(Ⅱ) from aqueous solution, the prepared graphene oxide-supported ferroferric oxide(Fe_3O_4/GO) nanocomposites were used to remove Cd(Ⅱ) from aqueous solutions. Single factor experiments were used to determine the level of operating factors(initial Cd(Ⅱ) concentration, operating temperature, contact time and initial pH). The operating parameters(4-factor-3-level) of removal Cd(Ⅱ) from aqueous solution were optimized by response surface methodology(RSM) and artificial neural network-genetic algorithm(ANN-GA), the adsorbent performance was researched by isothermal adsorption, kinetics and thermodynamic parameters. Fe_3O_4/GO nanocomposites, the average size of 30.09 nm, were successfully prepared by the characterization of X-ray diffraction(XRD), scanning electron microscopy(SEM) and superconducting quantum interference device(SQUID). The predicted and confirmed values of removal Cd(Ⅱ) from aqueous solution were 86.451% and 82.220% with temperature = 20.14 ℃, contact time = 57.78 min, initial pH = 6.41 and initial Cd(Ⅱ) concentration = 11.18 mg/L using RSM, respectively. However, the predicted and confirmed values were 89.722% and 87.723% using ANN-GA with temperature = 29.96℃, initial pH = 5.49, initial Cd(Ⅱ) concentration = 28.36 mg/L and contact time = 65.78 min. According to R~2 value, the predicted maximum efficiency and confirmed experiment, the performance and predicted ability of ANN-GA model was better than that of RSM. RSM analysis of variance showed that the effects of four factors on the removal of Cd(Ⅱ) from aqueous solution of Fe_3O_4/GO nanocomposites were as follows: initial Cd(Ⅱ) concentration > temperature > reaction time > pH. The results of adsorption mechanism analysis showed that the adsorption process of Fe_3O_4/GO nanocomposites for removal Cd(Ⅱ) existed simultaneously physical and chemical adsorption. Combined with ANN-GA optimization, Fe_3O_4/GO nanocomposites can be used to remove Cd(Ⅱ) by using magnets to achieve rapid separation.
引文
[1]王济,李丁,宣斌,等.有机物料对土壤Pb有效态作用机理及影响效果研究进展[J].贵州师范大学学报(自然版),2018,36(2):107-113.Wang J,Li D,Xuan B,et al.Review on the mechanism and effect of organic materials on available Pb in soil[J].Journal of Guizhou Normal University(Natural Sciences),2018,36(2):107-113.
    [2]Purkayastha D,Mishra U,Biswas S.A comprehensive review on Cd(II)removal from aqueous solution[J].Journal of Water Process Engineering,2014,2:105-128.
    [3]Kheriji J,Tabassi D,Hamrouni B.Removal of Cd(II)ions from aqueous solution and industrial effluent using reverse osmosis and nanofiltration membranes[J].Water Science&Technology A Journal of the International Association on Water Pollution Research,2015,72(7):1206-1216.
    [4]Saljoughi E,Mousavi S M.Development of high performance nanofiltration membranes with hydrophilic surface for the removal of cadmium from contaminated water[J].Separation Science&Technology,2012,47(16):2305-2310.
    [5]Wong C W,Barford J P,Chen G,et al.Kinetics and equilibrium studies for the removal of cadmium ions by ion exchange resin[J].Journal of Environmental Chemical Engineering,2014,2(1):698-707.
    [6]Boparai H K,Joseph M,O'Carroll D M.Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles[J].Journal of Hazardous Materials,2011,186(1):458-465.
    [7]?nder M,?akir Aydo?an M K.A new route for the synthesis of graphene oxide-Fe3O4,(GO-Fe3O4)nanocomposites and their Schottky diode applications[J].Journal of Alloys&Compounds,2014,585(6):681-688.
    [8]Yadav M,Rhee K Y,Park S J,et al.Mechanical properties of Fe3O4/GO/chitosan composites[J].Composites Part B,2014,66(11):89-96.
    [9]Cao R,Fan M,Hu J,et al.Optimizing low-concentration mercury removal from aqueous solutions by reduced graphene oxide-supported Fe3O4 composites with the aid of an artificial neural network and genetic algorithm:[J].Materials,2017,10(11):1279-1296.
    [10]Jiao T,Liu Y,Wu Y,et al.Facile and scalable preparation of graphene oxide-based magnetic hybrids for fast and highly efficient removal of organic dyes[J].Scientific Reports,2015,5:1-10.
    [11]Fan M,Li T,Hu J,et al.Artificial neural network modeling and genetic algorithm optimization for cadmium removal from aqueous solutions by reduced graphene oxide-supported nanoscale zero-valent iron(nZVI/rGO)composites[J].Materials,2017,10(5):544-566.
    [12]Ruan W,Shi X,Hu J,et al.Modeling of malachite green removal from aqueous solutions by nanoscale zerovalent zinc using artificial neural network[J].Applied Sciences,2017,8(1):1350-1372.
    [13]Zhang Y,Pan B.Modeling batch and column phosphate removal by hydrated ferric oxide-based nanocomposite using response surface methodology and artificial neural network[J].Chemical Engineering Journal,2014,249:111-120.
    [14]Yang X,Zhou T,Ren B,et al.Synthesis,characterization,and adsorptive properties of Fe3O4/GO nanocomposites for antimony removal[J].Journal of Analytical Methods in Chemistry,2017:1-8.
    [15]谢建新,吴云英,陈文静,等.Fe3O4/MnO2复合纳米材料对水中刚果红吸附性能研究[J].贵州师范大学学报(自然版),2017,(6):89-92.Xie J X,Wu Y Y,Chen W J,et al.Adsorption of Congo red from water by Fe3O4/MnO2 nanocomposites[J].Journal of Guizhou Normal University(Natural Sciences),2017,(6):89-92.
    [16]Das S,Mishra S.Box-Behnken statistical design to optimize preparation of activated carbon from Limonia acidissima,shell with desirability approach[J].Journal of Environmental Chemical Engineering,2017,5(1):588-600.
    [17]Park Y S,Céréghino R,Compin A,et al.Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters[J].Ecological Modelling,2003,160(3):265-280.
    [18]Ghaedi M,Zeinali N,Ghaedi A M,et al.Artificial neural networkgenetic algorithm based optimization for the adsorption of methylene blue and brilliant green from aqueous solution by graphite oxide nanoparticle[J].Spectrochimica Acta Part A Molecular&Biomolecular Spectroscopy,2014,125(6):264-277.
    [19]Wang Z H,Gong D Y,Li X,et al.Prediction of bending force in the hot strip rolling process using artificial neural network and genetic algorithm(ANN-GA)[J].International Journal of Advanced Manufacturing Technology,2017,93(4):1-14.
    [20]李力,陆宇超,刘娅,等.玉米秸秆生物炭对Cd(Ⅱ)的吸附机理研究[J].农业环境科学学报,2012,(11):2277-2283.Li L,Lu Y C,Liu Y,et al.Adsorption mechanisms of Cadmium(II)on Biochars Derived from Corn Straw[J].Journal of AgroEnvironment Science,2012(11):2277-2283.
    [21]Tan P,Sun J,Hu Y Y,et al.Adsorption of Cu2+,Cd2+and Ni2+from aqueous single metal solutions on graphene oxide membranes[J].Journal of Hazardous Materials,2015,297:251-260.
    [22]马锋锋,赵保卫,刁静茹.小麦秸秆生物炭对水中Cd2+的吸附特性研究[J].中国环境科学,2017,37(2):551-559.Ma F F,Zhao B W,Diao J R.Adsorptive characteristics of cadmium onto biochar produced from pyrolysis of wheat straw in aqueous solution[J].China Environmental Science,2017,37(2):551-559.
    [23]Teo P S,Lim H N,Huang N M,et al.Room temperature in situ chemical synthesis of Fe3O4/graphene[J].Ceramics International,2012,38(8):6411-6416.
    [24]Xu H L,Shen Y,Bi H.Reduced graphene oxide Decorated with Fe3O4nanoparticles as high performance anode for lithium ion batteries[J].Key Engineering Materials,2012,519:108-112.
    [25]刘琼,王娟,陈秀华.Fe3O4纳米粒子-氧化石墨烯纳米复合物的制备、表征及体外毒性评价[J].中国医药工业杂志,2013,44(3):253-257.Liu Q,Wang J,Chen X H.Preparation,characterization and in vitro cytotoxicity evaluation of Fe3O4 nanoparticles decorated graphene oxide[J].Chenese journal of pharmaceuticals,2013,44(3):253-257.
    [26]Cao L,Jiang Y,Chen Z.Hollow Fe3O4/Graphene Oxide Nanocomposites as Novel Rapamycin Carrier:Formulation Optimization and In Vitro Characterization[J].J Nanosci Nanotechnol,2018,18(5):3067-3076.
    [27]邵晓萍,代波,马拥军.共沉淀制备不同粒径Fe3O4纳米颗粒及磁性能的研究[J].功能材料,2011,42(1):178-181.Shao X P,Dai B,Ma Y J.Synthesis of Fe3O4nanoparticles with various sizes and magnetic properties by coprecipitation[J].Fuctional materials,2011,42(1):178-181.
    [28]郭锋.基于响应面的结构可靠性分析[D].沈阳:沈阳航空航天大学,2015.Guo F.The analysis of structural reliability using response surface methods[D].Shenyang:Shenyang Aerospace University,2015.
    [29]陈斌源.基于人工智能的超临界直流炉受热面金属温度软测量及预测研究[D].广州:华南理工大学,2009:3-15.Chen B Y.Research on the heating surface metal temperatures soft sensor and prediction in super-critical once-through boiler based on artificial intelligence[D].Guangzhou:South China University of Technology,2015:3-15.
    [30]苏鹃,伍钧,杨刚,等.改性白果壳对水溶液中重金属镉的吸附研究[J].农业环境科学学报,2014,33(6):1218-1225.Su J,Wu J.Yang G,et al.Adsorption of Cd2+from Solution by Modified Ginkgo Shell Powder[J].Journal of Agro-environment Science,2014,33(6):1218-1225.
    [31]K?l??M,?isem K?rb?y?k,?zge?epelio?ullar,et al.Adsorption of heavy metal ions from aqueous solutions by bio-char,a by-product of pyrolysis[J].Applied Surface Science,2013,283(14):856-862.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700