用户名: 密码: 验证码:
基于受激布里渊散射的多阻带微波光子滤波器
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Multi-Stopband Microwave Photonic Filter Based on Stimulated Brillouin Scattering
  • 作者:徐翌明 ; 潘炜 ; 卢冰 ; 于歌
  • 英文作者:Xu Yiming;Pan Wei;Lu Bing;Yu Ge;College of Information Science and Technology, Southwest Jiaotong University;
  • 关键词:光通信 ; 滤波器 ; 受激布里渊散射 ; 微波光子滤波器 ; 可变阻带
  • 英文关键词:optical communications;;filter;;stimulated Brillouin scattering;;microwave photonic filter;;variable stopband
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:西南交通大学信息科学与技术学院;
  • 出版日期:2018-07-15 20:59
  • 出版单位:中国激光
  • 年:2018
  • 期:v.45;No.503
  • 基金:国家863计划(2015AA016903);; 国家自然科学基金(61775185,61405165);; 四川省国际科技合作重点项目(2018HH0002)
  • 语种:中文;
  • 页:JJZZ201811029
  • 页数:7
  • CN:11
  • ISSN:31-1339/TN
  • 分类号:218-224
摘要
基于受激布里渊散射效应,设计并实现了一种非周期性多阻带微波光子滤波器。采用可编程射频信号驱动电光调制器,产生可变多音抽运光,实现光边带多频同时处理。阻带个数、阻带中心频率和阻带带外抑制比均由射频信号调控。实验结果表明,该微波光子滤波器频谱响应呈非周期性,各阻带中心频率互不相干且与阻带个数无关,并可在2~8 GHz范围内独立调谐。阻带带外抑制比最大为49 dB。
        Based on the stimulated Brillouin scattering, a variable multi-stopband microwave photonic filter with aperiodic spectral response is designed and experimentally demonstrated. Variable multi-tone pump light is generated and the multi-frequency optical sideband is simultaneously processed by the usage of a programmable electrooptic modulator driven by the radio-frequency signal. The number of stopbands, central frequencies of stopbands and out-of-band rejections of stopbands are controlled by the radio-frequency signal. As the experimental result shows, the spectral response of this microwave photonic filter is aperiodic, and the central frequencies of all stopbands are mutually uncorrelated and irrelevant with the number of stopbands, which can be tuned within 2 GHz to 8 GHz independently. The maximum out-of-band rejection can reach to 49 dB.
引文
[1] Gopalan. Introduction to radar systems[M]. New York: McGraw-Hill, 1980: 1-5.
    [2] Bogdan G, Radu V, Octavian F, et al. Design of multi-band microwave filter with asymmetric polygonal microstrip loops[C]//International Conference on Electronics, Computers and Artificial Intelligence, June 30-July 2, 2016, Ploiesti, Romania. New York: IEEE, 2016: 1-5.
    [3] Yu Y, Li S, Zheng X, et al. Sidelobe suppression analysis of microwave photonic filter based on spectrum-shaped optical frequency combs[J]. Chinese Optics Letters, 2016, 14(6): 060601.
    [4] Wang W X, Tao J, Huang L. Narrowband tunable microwave photonic filter based on Fabry-Perot laser with optical injection[J]. Chinese Journal of Lasers, 2017, 44(10): 1006002. 王文轩, 陶继, 黄龙. 基于光注入法布里-珀罗激光器的窄带可调谐微波光子滤波器[J]. 中国激光, 2017, 44(10): 1006002.
    [5] Ge J, Feng H, Scott G, et al. High-speed tunable microwave photonic notch filter based on phase modulator incorporated Lyot filter[J]. Optics Letters, 2015, 40(1): 48-51.
    [6] Xu E M, Pan S L, Li P L. Reconfigurable microwave photonic filter based on polarization modulation[J]. Optical Engineering, 2015, 55(3): 031120.
    [7] Nickel D V, Villarruel C, Koo K, et al. Few mode fiber-based microwave photonic finite impulse response filters[J]. Journal of Lightwave Technology, 2017, 35(23): 5230-5236.
    [8] Wu R, Chen H, Zhang S, et al. A tunable multi-passband microwave photonic filter[C]∥International Conference on Optical Communications and Networks, September 24-27, 2016, Hangzhou, China. New York: IEEE, 2017: 1-3.
    [9] Capmany J, Ortega B, Pastor D. A tutorial on microwave photonic filters[J]. Journal of Lightwave Technology, 2006, 24(1): 201-229.
    [10] Zhang W, Minasian R A. Switchable and tunable microwave photonic Brillouin-based filter[J]. IEEE Photonics Journal, 2012, 4(5): 1443-1455.
    [11] Minasian R A. Photonic signal processing of microwave signals[J]. IEEE Transactions on Microwave Theory & Techniques, 2006, 54(2): 832-846.
    [12] Choudhary A, Aryanfar I, Shahnia S, et al. Tailoring of the Brillouin gain for on-chip widely tunable and reconfigurable broadband microwave photonic filters[J]. Optics Letters, 2016, 41(3): 436-439.
    [13] Hu S, Li L, Yi X, et al. Tunable dual-passband microwave photonic filter based on stimulated Brillouin scattering[J]. IEEE Photonics Technology Letters, 2017, 29(3): 330-333.
    [14] Li Y D, Wang R, Pu T, et al. Review on high out-of-band suppression ratio of microwave photonic filter[J]. Laser & Optoelectronics Progress, 2018, 55(2): 020005. 李元栋, 王荣, 蒲涛, 等. 高带外抑制比微波光子滤波器研究进展[J]. 激光与光电子学进展, 2018, 55(2): 020005.
    [15] Han X, Yao J. Bandstop-to-bandpass microwave photonic filter using a phase-shifted fiber Bragg grating[J]. Journal of Lightwave Technology, 2015, 33(24): 5133-5139.
    [16] Tang H, Yu Y, Zhang C, et al. Analysis of performance optimization for a microwave photonic filter based on stimulated Brillouin scattering[J]. Journal of Lightwave Technology, 2017, 35(20): 4375-4383.
    [17] Bai G F, Hu L, Jiang Y, et al. Versatile photonic microwave waveforms generation using a dual-parallel Mach-Zehnder modulator without other dispersive elements[J]. Optics Communications, 2017, 396: 134-140.
    [18] Li W,Yang C W, Wang L, et al. Single-notch microwave photonic filter using a nonsliced ASE source and a laser diode[J]. IEEE Photonics Journal, 2016, 8(1): 1-7.
    [19] Aryanfar I, Choudhary A, Shahnia S, et al. Reconfigurable microwave bandstop filter based on stimulated Brillouin scattering[C]//International Topical Meeting on Microwave Photonics (MWP), October 31-November 3, 2016, Long Beach, CA, USA. New York: IEEE, 2016: 118-121.
    [20] Yi L, Wei W, Jaouën Y, et al. Polarization-independent rectangular microwave photonic filter based on stimulated Brillouin scattering[J]. Journal of Lightwave Technology, 2016, 34(2): 669-675.
    [21] Li P, Pan W, Zou X, et al. Flexible microwave signal generation with frequency multiplication based on tunable OEO and SBS-assisted notch filter[C]//International Conference on Optical Communications and Networks, July 3-5, 2015, Nanjing, China. New York: IEEE, 2015: 1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700