用户名: 密码: 验证码:
精炼渣对高锰钢中非金属夹杂物的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of refining slag on non-metallic inclusions in high manganese steel
  • 作者:李牧明 ; 于会香 ; 潘明 ; 白皓
  • 英文作者:LI Mu-ming;YU Hui-xiang;PAN Ming;BAI Hao;School of Metallurgical and Ecological Engineering,University of Science and Technology Beijing;
  • 关键词:高锰钢 ; 精炼渣 ; 非金属夹杂物 ; 渣/钢平衡
  • 英文关键词:high manganese steel;;refining slag;;non-metallic inclusion;;slag/steel equilibrium
  • 中文刊名:GANT
  • 英文刊名:Iron & Steel
  • 机构:北京科技大学冶金与生态工程学院;
  • 出版日期:2019-06-15
  • 出版单位:钢铁
  • 年:2019
  • 期:v.54
  • 基金:国家自然科学基金资助项目(51404020)
  • 语种:中文;
  • 页:GANT201906006
  • 页数:6
  • CN:06
  • ISSN:11-2118/TF
  • 分类号:43-48
摘要
为了研究精炼渣对高锰钢中非金属夹杂物的影响,采用渣/钢平衡的试验方法研究了MgO-SiO_2-Al_2O_3-CaO系精炼渣对Fe-xMn高锰钢(x=10%,20%)中非金属夹杂物的影响。结果表明,无顶渣情况下,高锰钢中夹杂物主要为MnO类和MnO-Al_2O_3类2类。加入精炼渣后,夹杂物类型发生了变化,主要有MnO类、MnO-SiO_2类和MnO-Al_2O_3-MgO类3类,其中MnO-SiO_2类数量最多。采用ASPEX扫描电镜对夹杂物的平均成分进行分析,无顶渣时高锰钢中夹杂物的成分主要是MnO,质量分数在95%以上,并含有质量分数为4%左右的Al_2O_3。加入精炼渣后,夹杂物中MnO质量分数降低,SiO_2质量分数显著增加,MgO质量分数增加。热力学计算结果表明,加入精炼渣后,渣/钢间反应4[Al]+3(SiO_2)=2(Al_2O_3)+3[Si]和2[Mn]+(SiO_2)=2(MnO)+[Si]的吉布斯自由能均小于零,这说明在本试验条件下,钢液中的[Al]和[Mn]会还原渣中SiO_2,生成的[Si]进入钢液,进而与钢液中的[O]结合,导致夹杂物中SiO_2增加。
        In order to research the effect of refining slag on non-metallic inclusions in high manganese steel,the effect of the MgO-SiO_2-Al_2O_3-CaO refining slag on non-metallic inclusions in the Fe-xMn high manganese steel(x=10%,20%)was studied by slag/steel equilibrium experiments.The results show that there are two types of inclusions in the high manganese steel without top slag,MnO and MnO-Al_2O_3.After the addition of the refining slag,the inclusions transformed to three main types,which were MnO,MnO-SiO_2 and MnO-Al_2O_3-MgO.Among them,the MnO-SiO_2 type shares the majority of the total inclusions.According to the result analyzed by the ASPEX scanning electron microscopy,the main component of inclusions in the master high manganese steel is MnO,with the mass percent above 95%,and the mass percent of Al_2O_3 about 4%.After reacting with the refining slag,the mass percent of MnO in the inclusions decreases,while that of SiO_2 and MgO increases,especially SiO_2 increases significantly.The thermodynamic calculation results show that the Gibbs free energy change of both reactions(4[Al]+3(SiO_2)=2(Al_2O_3)+3[Si]and 2[Mn]+(SiO_2)=2(MnO)+[Si])between the slag and the molten steel is much less than zero.It indicates that under present experimental conditions,SiO_2 in the slag can be reduced by[Al]and[Mn]in the molten steel to supply[Si],which then reacts with[O]in the molten steel,leading the SiO_2 content in the inclusions.
引文
[1]米振莉,唐荻,严玲,等.高强度高塑性TWIP钢的开发研究[J].钢铁,2005,40(1):48.(MI Zhen-li,TANG Di,YAN Ling,et al.Study of high strength and high plasticity TWIP steel[J].Iron and Steel,2005,40(1):48.)
    [2]兰鹏,杜辰伟,纪元,等.汽车用高锰TWIP钢的研究现状[J].中国冶金,2014,25(7):6.(LAN Peng,DU Chen-wei,JI Yuan,et al.Research status of high manganese TWIP steel for automotive industry[J].China Metallurgy,2014,25(7):6.)
    [3] Chen L,Kim H S,Kim S K,et al.Localized deformation due to portevin-le chatelier effect in 18Mn-0.6CTWIP austenitic steel[J].ISIJ International,2007,47(12):1804.
    [4] Grassel O,Frommeyer G.Effect of martensitic phase transformation and deformation twinning on mechanical properties of Fe-Mn-Si-Al steels[J].Materials Science and Technology,1998,14(2):1213.
    [5] Grassel O,Kruger L,Frommeyer G,et al.High strength FeMn-(Al,Si)TRIP/TWIP steels development-properties-application[J].International Journal of Plasticity,2000,16:1391.
    [6] Allain S,Chateau J P,Bouaziz O.A physical model of the twinning-induced plasticity effect in a high manganese austenitic steel[J].Materials Science and Engineering A,2004,387/389:143.
    [7]昝娜,丁桦,骆小鹏,等.晶粒尺寸对高锰奥氏体TWIP钢氢脆行为的影响[J].中国冶金,2016,26(1):23.(ZAN Na,DING Hua,LUO Xiao-peng,et al.Effect of grain size on hydrogen embrittlement of high Mn austenitic TWIP steel[J].China Metallurgy,2016,26(1):23.)
    [8]刘向海,刘薇,刘嘉斌,等.孪生诱发塑性(TWIP)钢的研究现状[J].材料导报,2010,24(6):102.(LIU Xiang-hai,LIU Wei,LIU Jia-bin,et al.Current situation of the TWIP steel[J].Materials Review,2010,24(6):102.)
    [9]马凤仓,冯伟骏,王利,等.TWIP钢的研究现状[J].宝钢技术,2008(6):62.(MA Feng-cang,FENG Wei-jun,WANG Li,et al.The TWIP steel research work at present[J].Baosteel Technical Research,2008(6):62.)
    [10]丁桦,杨平.高锰TRIP/TW IP钢变形行为的研究进展[J].材料与冶金学报,2010,9(4):265.(DING Hua,YANG Ping.Research progress on deformation behavior of high manganese TRIP/TWIP steel[J].Journal of Materials and Metallurgy,2010,9(4):265.)
    [11] Frommeyer G,Brux U.Microstructures and mechanical properties of high-strength Fe-Mn-Al-C light-weight TRIPLEX steels[J].Steel Research International,2006,77(9/10):627.
    [12]李彦龙,齐亮,邵传兵,等.球磨机衬板高锰钢性能改进[J].钢铁,2018,53(3):72.(LI Yan-long,QI Liang,SHAO Chuanbing,et al.Performance improvement of ball mill liner high manganese steel[J].Iron and Steel,2018,53(3):72.)
    [13]陈雷,张英杰,李飞,等.固溶温度对节约型双相不锈钢TRIP/TWIP行为的影响[J].钢铁,2017,52(4):55.(CHEN Lei,ZHANG Ying-jie,LI Fei,et al.Effect of solution temperature on TRIP/TWIP behavior of economical duplex stainless steel[J].Iron and Steel,2017,52(4):55.)
    [14] WEN L D,HONG W N,HUA Z,et al.The effect of cooling conditions on the evolution of non-metallic inclusions in high manganese TWIP steels[J]. Metallurgical and Materials Transactions B,2016,47B:1378.
    [15] Gunter G,Wilfried K,Piotr R S,et al.Non-metallic inclusions in high-manganese-alloy steels[J].Steel Research,2005,76(9):644.
    [16] ZHUANG C L,LIU J H,MI Z L,et al.Non-metallic inclusions in TWIP steel[J].Steel Research,2014,85(10):1432.
    [17] Park J H,Kim D J,Min D J.Characterization of nonmetallic inclusions in high-manganese and aluminum-alloyed austenitic steels[J].Metallurgical and Materials Transactions A,2012,43A:2316.
    [18] Liu H,Liu J,Michelic S,et al.Characteristics of AlN inclusions in low carbon Fe-Mn-Si-Al TWIP steel produced by AOD-ESR method[J].Ironmaking and Steelmaking,2016,43(3):171.
    [19] WANG Y N,YANG J,WANG R Z,et al.Effects of non-metallic inclusions on hot ductility of high manganese TWIP steels containing different aluminum contents[J].Metallurgical and Materials Transactions B,2016,47B:1697.
    [20] Sigworth G K,Elliott J F.The thermodynamics of liquid dilute iron alloys[J].Metal Science,1974,8(9):298.
    [21]陈玉鑫,陈峰,温瀚,等.低硫钢种的低硅精炼技术[J].钢铁,2018,53(7):60.(CHEN Yu-xin,CHEN Feng,WEN Han,et al.Low silicon control for steel grades with low sulphur mass percent[J].Iron and Steel,2018,53(7):60.)
    [22] Elliott J F,Gleiser M,and Ramakrishna V.Thermochemistry for Steelmaking,Addison-Wesley,London,1963,2:620.
    [23]戴诗凡,吴伟,马登,等.提高炉渣中MnO向钢中传递的试验[J].钢铁,2017,52(8):35.(DAI Shi-fan,WU Wei,MA Deng,et al.Experiment on improving transfer of MnO in slag to molten steel[J].Iron and Steel,2017,52(8):35.)
    [24] Gaye H,Gatellier C,Nadif M,et al.Slags and inclusions control in secondary steelmaking[J].Metallurgical Research and Technology,1987,84(11):759.
    [25]郭汉杰.冶金物理化学[M].北京:冶金工业出版社,2006.(GUO Han-jie.Metallurgical Physical Chemistry[M].Beijing:Metallurgical Industry Press,2006.)
    [26] Mitsutaka H,Kimihisa I.Thermodynamic Data for Steelmaking[M].Sendai:Tohoku University Press,2010.
    [27] Suito H,Inoue R.Thermodynamics on control of inclusions compositions in ultra-clean steel[J].ISIJ International,1996,36(5):528.
    [28] YU H X,XU J F,ZHANG J.Effect of Al2O3content on metallurgical characteristics of refining slag[J].Ironmaking and Steelmaking,2016,43(8):607.
    [29] YU H X,WANG X H,ZHANG J,et al.Characteristics and metallurgical effects of medium basicity refining slag on low melting temperature inclusions[J].Journal of Iron and Steel Research,International,2015,22(7):573.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700