用户名: 密码: 验证码:
粒径对好氧颗粒污泥储存稳定性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of particle size on storage stability of aerobic granular sludge
  • 作者:张立楠 ; 张斌超 ; 刘祖文 ; 宣鑫鹏 ; 程媛媛 ; 龙焙 ; 邢雨 ; 兰鑫 ; 曾敏静
  • 英文作者:ZHANG Linan;ZHANG Binchao;LIU Zuwen;XUAN Xinpeng;CHENG Yuanyuan;LONG Bei;XING Yu;LAN Xin;ZENG Minjing;Jiangxi Key Laboratory of Environmental Geotechnology and Engineering Disaster Control;School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology;
  • 关键词:好氧颗粒污泥 ; 粒径 ; 包埋 ; 储存 ; 稳定性
  • 英文关键词:aerobic granular sludge;;particle size;;embed;;storage;;stability
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:江西省环境岩土与工程灾害控制重点实验室;江西理工大学建筑与测绘学院市政工程系;
  • 出版日期:2019-05-05 09:57
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.334
  • 基金:江西省研究生创新专项资金(YC2018-S319);; 江西省青年科学基金(20181BAB216026);; 2018年国家级大学生创新创业训练计划(201810407005)
  • 语种:中文;
  • 页:HGJZ201907048
  • 页数:8
  • CN:07
  • ISSN:11-1954/TQ
  • 分类号:443-450
摘要
研究了混合粒径与不同粒径好氧颗粒污泥(AGS)在储存过程中的三维结构、质量变化、微生物活性以及理化特性的变化规律。经过室温(16~25℃)下31天的储存,污泥的三维结构均保持较好,未出现明显解体现象。混合粒径的AGS在储存前20天,其质量和比耗氧速率(SOUR)下降缓慢,胞外聚合物(EPS)先减小后上升。20天之后由于厌氧菌在竞争中逐渐占得优势,其质量减小了46.3%,EPS与SOUR分别下降69.0%和72.7%,导致稳定性随之下降。不同粒径AGS经过储存后,其颜色仍为橙黄色且结构完整;1~2mm和3~4mm粒径的AGS质量减小(分别为49.1%和53.9%)较大,且SOUR和EPS下降了亦较大;0.3~1mm粒径的AGS质量减小较少,EPS下降较少,但SOUR下降幅度较大,而2~3mm粒径的质量仅减小了33.7%、SOUR下降幅度最小(39.8%),EPS下降幅度也相对较小(58.7%),表明其在储存过程中能保持较好的活性与稳定性。
        The three-dimensional structure, mass change, biological activity and physical and chemical properties of different particle sizes and mixed particle size aerobic granule sludges(AGS) during storage were studied. After 31 days of storage at room temperature(16—25℃), the sludge structure remained good and there was no obvious disintegration. In the first 20 days of storage, the quality and specific oxygen uptake rate(SOUR) of the mixed particle size AGS decreased slowly. Extracellular polymer(EPS)first decreased and then raised. Then, due to the anaerobic bacteria took advantage of the competition, its quality(46.3%), EPS(69.0%) and SOUR(72.7%) decreased significantly, resulting in a decrease in stability. After storage of different particle size AGS, the color was still orange and the structure was complete. The AGS mass loss of 1—2 mm and 3—4 mm particle size(49.1% and 53.9%, respectively) was larger, and the decrease of SOUR and EPS was also larger. The mass of AGS with 0.3—1 mm particle size decreased lesser, and EPS decreased lesser, but the decrease of SOUR was larger, while the quality of 2—3 mm particle size only decreased by 33.7%. The decrease of SOUR was the smallest(39.8%). The EPS decline was relatively small(58.7%), which showed that it could maintain good activity and stability during the storage.
引文
[1] SHOW K Y, LEE D J, TAY J H. Aerobic granulation:advances and challenges[J]. Applied Biochemistry and Biotechnology, 2012, 167(6):1622-1640.
    [2] LONG B, YANG C Z, PU W H, et al. The treatment of solvent recovery raffinate by aerobic granular sludge in a pilot-scale sequencing batch reactor[J]. Journal of Water&Health, 2015, 13(3):746-757.
    [3] PRONK M, DE KREUK M K, DE BRUIN B, et al. Full scale performance of the aerobic granular sludge process for sewage treatment[J]. Water Research, 2015, 84:207-217.
    [4]苏海佳,王陆玺,邓爽,等.好氧颗粒污泥技术及研究进展[J].化工进展, 2016, 35(6):1914-1922.SU H J, WANG L X, DENG S, et al. A review on the aerobic granular sludge technology[J]. Chemical Industry and Engineering Progress,2016, 35(6):1914-1922.
    [5] NANCHARAIAH Y V, KIRAN K R G. Aerobic granular sludge technology:mechanisms of granulation and biotechnological applications[J]. Bioresource Technology, 2017, 247:1128-1143.
    [6] CHENG Y Y, XUAN X P, ZHANG L N, et al. Storage of aerobic granular sludge embedded in agar and its reactivation by real wastewater[J]. Journal of Water and Health, 2018, 16(6):958-969.
    [7] WAN C, LEE D J, YANG X, et al. Saline storage of aerobic granules and subsequent reactivation[J]. Bioresource Technology, 2014, 172:418-422.
    [8] HE Q, ZHANG W, ZHANG S, et al. Performance and microbial population dynamics during stable operation and reactivation after extended idle conditions in an aerobic granular sequencing batch reactor[J]. Bioresource Technology, 2017, 238:116-121.
    [9] LV Y, WAN C, LIU X, et al. Freezing of aerobic granules for storage and subsequent recovery[J]. Journal of the Taiwan Institute of Chemical Engineers, 2013, 44(5):770-773.
    [10]赵珏,程媛媛,宣鑫鹏,等.好氧颗粒污泥的常温湿式储存及恢复[J].化工进展, 2018, 37(1):381-388.ZHAO J, CHENG Y Y, XUAN X P, et al. Room-temperature wet storage of aerobic granular sludge and its reactivation[J]. Chemical Industry and Engineering Progress, 2018, 37(1):381-388.
    [11] ZHANG L L, ZHANG B, HUANG Y F, et al. Re-activation characteristics of preserved aerobic granular sludge[J]. Journal of Environmental Sciences, 2005, 17(4):655-658.
    [12]刘宏波,杨昌柱,濮文虹,等.好氧颗粒污泥活性恢复的试验研究[J].中国给水排水, 2008, 24(19):16-19.LIU H B, YANG C Z, PU W H, et al. Experimental research on activity recovery of aerobic granular sludge[J]. China Water&Wastewater,2008, 24(19):16-19.
    [13] XU H C, HE P J, WANG G Z, et al. Enhanced storage stability of aerobic granules seeded with pellets[J]. Bioresource Technology,2010, 101(21):8031-8037.
    [14]高景峰,苏凯,陈冉妮,等.不同储存方法对好氧颗粒污泥恢复的影响[J].应用基础与工程科学学报, 2011, 19(3):408-415.GAO J F, SU K, CHEN R N, et al. Reactivation characteristics of aerobic granular sludge preserved by different methods[J]. Journal of Basic Science and Engineering, 2011, 19(3):408-415.
    [15] GAO D W, YUAN X J, LIANG H. Reactivation performance of aerobic granules under different storage strategies[J]. Water Research, 2012,46(10):3315-3322.
    [16] LV Y, WAN C, LIU X, et al. Drying and re-cultivation of aerobic granules[J]. Bioresource Technology, 2013, 129(2):700-703.
    [17] HU J, ZHANG Q, CHEN Y Y, et al. Drying and recovery of aerobic granules[J]. Bioresource Technology, 2016, 218:397-401.
    [18]赵珏,宣鑫鹏,程媛媛,等.琼脂包埋好氧颗粒污泥的储存及恢复[J].中国给水排水, 2018, 34(3):23-29.ZHAO J, XUAN X P, CHENG Y Y, et al. Storage and reactivation of aerobic granular sludge embedded in agar[J]. China Water&Wastewater, 2018, 34(4):23-29.
    [19] VERAWATY M, TAIT S, PIJUAN M, et al. Breakage and growth towards a stable aerobic granule size during the treatment of wastewater[J]. Water Research, 2013, 47(14):5338-5349.
    [20] Di BELLA G, TORREGROSSA M. Simultaneous nitrogen and organic carbon removal in aerobic granular sludge reactors operated with high dissolved oxygen concentration[J]. Bioresource Technology, 2013,142:706-713.
    [21]侯爱月,李军,王昌稳,等.不同好氧颗粒污泥中微生物群落结构特点[J].中国环境科学, 2016, 36(4):1136-1144.HOU A Y, LI J, WANG C W, et al. Characteristics of microbial community structure in different aerobic granular sludge[J]. China Environmental Science, 2016, 36(4):1136-1144.
    [22]国家环境保护总局.水和废水监测分析方法[M]. 4版.北京:中国环境科学出版社, 2006.State Environmental Protection Administration. Standard methods for water and wastewater analysis[M]. 4th ed. Beijing:China Environmental Science Publishing House, 2006.
    [23] ZENG P, ZHUANG W Q, TAY S T, et al. The influence of storage on the morphology and physiology of phthalic acid-degrading aerobic granules[J]. Chemosphere, 2007, 69(11):1751-1757.
    [24] OCHOA J C, COLPRIN J, PALACIOS B, et al. Active heterotrophic and autotrophic biomass distribution between fixed and suspended systems in a hybrid biological reactor[J]. Water Science and Technology, 2002, 46:397-404.
    [25] REN Y, LIU Y, HAO G, et al. The removal effect of pollutants and components in extracellular polymeric substances from aerobic granular sludge in simultaneous removal of organic matter and ammonia nitrogen[J]. Chemical and Biochemical Engineering Quarterly, 2015,29(4):609-616.
    [26] OTHMAN I, ANUAR A N, UJANG Z, et al. Livestock wastewater treatment using aerobic granular sludge[J]. Bioresource Technology,2013, 133(2):630-634.
    [27] IVANOY V. Presence of anaerobic bacteroides in aerobically grown microbial granules[J]. Microbial Ecology, 2002, 44(3):278-285.
    [28] YOSHIKAWA T, HILL J M, STANBERRY L R, et al. The characteristic site-specific reactivation phenotypes of HSV-1 and HSV-2 depend upon the latency-associated transcript region[J].Journal of Experimental Medicine, 1996, 184(2):659-664.
    [29]胡以松,王晓昌,孙琪媛,等. MBR中污泥的内源消化性能及EPS转化特征解析[J].西安建筑科技大学学报(自然科学版), 2017,49(3):437-442.HU Y S, WANG X C, SUN Q Y, et al.Variation characteristics of EPS and endogenous digestion performance of surplus sludge from MBR process[J]. Journal of Xi'an University of Architecture&Technology(Natural Science Edition), 2017,49(3):437-442.
    [30] TAY J H, LIU Q S, LIU Y. Microscopic observation of aerobic granulation in sequential aerobic sludge blanket reactor[J]. Journal of Applied Microbiology, 2001, 91(1):168-175.
    [31] ZHENG Y M, YU H Q, LIU S J, et al. Formation and instability of aerobic granules under high organic loading conditions[J].Chemosphere, 2006, 63(10):1791-1800.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700