用户名: 密码: 验证码:
MOFs复合材料催化降解水中有机污染物的应用研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress on the mechanism and applications of MOFs composite materials for catalytic degradation of organic pollutants in the solution
  • 作者:赵朝成 ; 吴光锐
  • 英文作者:ZHAO Chaocheng;WU Guangrui;College of Chemical Engineering, China University of Petroleum(East China);State Key Laboratory of Petroleum Pollution Control;
  • 关键词:MOFs复合材料 ; 催化降解 ; 有机污染物 ; 机理 ; 应用
  • 英文关键词:metal organic frameworks(MOFs) composite materials;;catalytic degradation;;organic pollutants;;mechanism;;applicant
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:中国石油大学(华东)化学工程学院;石油石化污染物控制与处理国家重点实验室;
  • 出版日期:2019-04-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.331
  • 基金:国家科技重大专项(2016ZX05040003)
  • 语种:中文;
  • 页:HGJZ201904021
  • 页数:10
  • CN:04
  • ISSN:11-1954/TQ
  • 分类号:186-195
摘要
金属有机框架材料(MOFs)具有比表面积较高、孔径尺寸可调、结构可设计和可以功能化的特点,近年来受到广泛关注,尤其是基于MOFs的复合材料在催化降解水中有机污染物的作用越来越突出,这是近年来MOFs的一个重要研究方向。本文综述了MOFs复合材料在催化降解水中有机污染物领域的研究情况;介绍了MOFs及其特性;说明了MOFs复合材料的负载方式;总结了MOFs复合材料在催化降解水中有机污染物方面的应用。同时,阐述了MOFs复合材料催化降解水中有机污染物的机理及其存在的问题。最后,提出未来MOFs复合材料在催化降解水中有机污染物的研究方向是合成形貌多样、结晶性能好的新型高稳定性材料以及开发新的MOFs及其复合材料的制备方法。
        Metal-organic frameworks(MOFs) are featured by high surface area, tunable pore sizes,designable structures, and easy functionalization. In recent years, MOFs have attracted considerable interests. Among them, the composite materials based on MOFs have played an increasing role in the catalytic degradation of organic compounds in aqueous solutions, which has become an important research direction of MOFs. In this work, the research and applications on the degradation of organic pollutions catalyzed by MOFs composite materials are reviewed. The characteristics of MOFs and the loading methods of MOFs composite materials are introduced. Meanwhile, the mechanisms and the existing problems are described. Finally, the research directions of MOFs composite materials on the catalytic degradation of organic compounds in aqueous solutions are the preparation of new highly stable materials with versatile morphology and good crystallinity, and new preparation methods of MOFs and composite materials.
引文
[1]王傲,孙康,蒋剑春.负载型酞菁用于水和空气中有机污染物的可见光催化降解研究进展[J].化工进展, 2017, 36(9):3475-3484.WANG Ao, SUN Kang, JIANG Jianchun. Immobilized phthalocyanines for the visible light photodegradation of organic pollutants in water and air[J]. Chemical Industry and Engineering Progress, 2017, 36(9):3475-3484.
    [2] DE A, ADHIKARY R, DATTA J. Proactive role of carbon nanotubepolyaniline conjugate support for Pt nano-particles toward electrocatalysis of ethanol in fuel cell[J]. International Journal of Hydrogen Energy, 2017, 42(40):25316-25325.
    [3]王炫,李焕焕,张乾,等.蛋白土-Fe2O3非均相Fenton催化剂高效降解罗丹明B染料废水[J].化工进展, 2017, 36(8):3116-3124.WANG Xuan, LI Huanhuan, ZHANG Qian, et al. Research on opalFe2O3as a heterogeneous Fenton catalyst for degrading the Rhodamine B dye wastewater[J]. Chemical Industry and Engineering Progress,2017, 36(8):3116-3124.
    [4] JIANG H L, AKITA T, ISHIDA T, et al. Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework[J]. Journal of the American Chemical Society, 2011, 133(5):1304-1306.
    [5] AIJAZ A, KARKAMKAR A, CHOI Y J, et al. Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework:a double solvents approach[J]. Journal of the American Chemical Society, 2012, 134(34):13926-13929.
    [6] YAGHI O M, LI H, DAVIS C, et al. Synthetic strategies, structure patterns, and emerging properties in the chemistry of modular porous solids[J]. Accounts of Chemical Research, 1998, 31(8):474-484.
    [7] LI X H, GUO W L, LIU Z H, et al. Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation[J]. Applied Surface Science, 2016, 369:130-136.
    [8]蒋静,艾伦弘.基于含铁金属-有机框架化合物的环境催化应用[C]//中国化学会第九届全国无机化学学术会议论文集——L能源材料化学,南昌,2015.JIANG Jing, AI Lunhong. An environmental catalytic application based on iron-containing metal-organic framework compounds[C]//Proceedings of the 9th National Instituate of Inorganic Chemistry of China Chemical Society—L Chemistry of Energy Materials,Nanchang,2015.
    [9]张春梅. MIL-101系列材料的合成及性能研究[D].哈尔滨:哈尔滨工业大学, 2014.ZHANG Chunmei. Synthesis and performance study of MIL-101materials[D]. Harbin:Harbin Institute of Technology, 2014.
    [10] DIETZEL P D C, GEORGIEV P A, ECKERT J, et al. Interaction of hydrogen with accessible metal sites in the metal-organic frameworks M2(dhtp)(CPO-27-M; M=Ni, Co, Mg)[J]. Chemical Communications, 2010, 46(27):4962-4964.
    [11] CHAVAN S M, SHEARER G C, BLOCH E, et al. Acetylene adsorption on CPO-27-M metal-organic frameworks(M=Fe, Co and Ni)[J]. Chem. Phys. Chem., 2012, 13(2):445-448.
    [12] VOLKRINGER C, POPOV D, LOISEAU T, et al. Synthesis, singlecrystal X-ray microdiffraction, and NMR characterizations of the giant pore metal-organic framework aluminum trimesate MIL-100[J].Chemistry of Materials, 2009, 21(24):5695-5697.
    [13] LONG P P, WU H W, ZHAO Q, et al. Solvent effect on the synthesis of MIL-96(Cr)and MIL-100(Cr)[J]. Microporous and Mesoporous Materials, 2011, 142(2):489-493.
    [14] VOLKRINGER C, LOISEAU T, FEREY G, et al. Synthesis, crystal structure and 71 Ga solid state NMR of a MOF-type gallium trimesate(MIL-96)withμ3-oxo bridged trinuclear units and a hexagonal 18-ring network[J]. Microporous and Mesoporous Materials, 2007, 105(1):111-117.
    [15] VOLKRINGER C, LOISEAU T. A new indium metal-organic 3D framework with 1,3,5-benzenetricarboxylate, MIL-96(In), containingμ3-oxo-centered trinuclear units and a hexagonal 18-ring network[J].Materials Research Bulletin, 2006, 41(5):948-954.
    [16] HASAN Z, JHUNG S H. Removal of hazardous organics from water using metal-organic frameworks(MOFs):plausible mechanisms for selective adsorptions[J]. Journal of Hazardous Materials, 2015, 283(11):329-339.
    [17]顾逸凡,吴一楠,李风亭.一种核壳结构金属有机框架材料MIL-53(Al)原位负载纳米锐钛矿TiO2的制备研究[C]//中国化学会第29届学术年会摘要集——第27分会:多孔功能材料,北京,2014.GU Yifan, WU Yinan, LI Fengting. In situ fabrication of MIL-53(Al)@nano antase TiO2with core-shell structure[C]//Summary of the 29th Annual Meeting of the Chinese Chemical Society—Chapter 27:Porous Functional Material, Beijing,2014.
    [18]黄远标,曹荣.介孔金属-有机框架化合物负载纳米钯高效催化吲哚C2芳香化反应[C]//中国化学会第28届学术年会摘要集——第8分会场,成都, 2012.HUANG Yuanbiao, CAO Rong. Palladium nanoparticles encapsulated in metal-organic framework as efficient heterogeneous catalysts for direct C2 arylation of indoles[C]//Summary of the 29th Annual Meeting of the Chinese Chemical Society—Chapter 28, Chengdu, 2012.
    [19] ZENG T, ZHANG X L, WANG S H, et al. Spatial confinement of a Co3O4catalyst in hollow metal-organic frameworks as a nanoreactor for improved degradation of organic pollutants[J]. Environmental-Science&Technology, 2015, 49(4):2350-2357.
    [20] WANG H, YUAN X Z, WU Y, et al. Synthesis and applications of novel graphitic carbon nitride/metal-organic frameworks mesoporous photocatalyst for dyes removal[J]. Applied Catalysis B:Environmental,2015, 174:445-454.
    [21] ZHANG C F, QIU L G, KE F, et al. A novel magnetic recyclable photocatalyst based on a core-shell metal-organic framework Fe3O4@MIL-100(Fe)for the decolorization of methylene blue dye[J].Journal of Materials Chemistry A, 2013, 1(45):14329-14334.
    [22] YUE X X, GUO W L, LI X H, et al. Core-shell Fe3O4@MIL-101(Fe)composites as heterogeneous catalysts of persulfate activation for the removal of acid orange 7[J]. Environmental Science and Pollution Research, 2016, 23(15):15218-15226.
    [23] ZHAO C C, DONG P, LIU Z M, et al. Facile synthesis of Fe3O4/MIL-101 nanocomposite as an efficient heterogeneous catalyst for degradation of pollutants in Fenton-like system[J]. RSC Advances,2017, 39(7):24453-24461.
    [24] LI X Y, PI Y H, XIA Q B, et al. TiO2encapsulated in salicylaldehydeNH2-MIL-101(Cr)for enhanced visible light-driven photodegradation of MB[J]. Applied Catalysis B:Environmental, 2016, 191:192-201.
    [25] LI H X, WAN J Q, MA Y W, et al. Degradation of refractory dibutyl phthalate by peroxymonosulfate activated with novel catalysts cobalt metal-organic frameworks:mechanism, performance, and stability[J].Journal of Hazardous Materials, 2016, 318:154-163.
    [26] WANG C, ZHANG H Y, FENG C, et al. Multifunctional Pd@MOF core-shell nanocomposite as highly active catalyst for p-nitrophenol reduction[J]. Catalysis Communications, 2015, 72:29-32.
    [27] KE F, WANG L H, ZHU J F. Multifunctional Au-Fe3O4@MOF coreshell nanocomposite catalysts with controllable reactivity and magnetic recyclability[J]. Nanoscale, 2015, 7(3):1201-1208.
    [28] ZHANGT,CHENY,LEIKNESTO.Oxidationofrefractorybenzothiazoles with PMS/CuFe2O4:kinetics and transformation intermediates[J].Environmental Science&Technology, 2016, 50(11):5864-5873.
    [29]刘秀英,于景新,李晓东.金属有机骨架中的水稳定性和吸附性能研究[J].化工新型材料, 2017,45(8):245-247.LIU Xiuying, YU Jingxin, LI Xiaodong. Study of water stability and adsorption on metal-organic framework[J]. New Chemical Materials,2017, 45(8):245-247.
    [30] MAKAL T A, WANG X, ZHOU H C. Tuning the moisture and thermal stability of metal-organic frameworks through incorporation of pendant hydrophobic groups[J]. Crystal Growth&Design, 2013, 13(11):4760-4768.
    [31] KüSGENS P, ROSE M, SENKOVSKA I, et al. Characterization of metal-organic frameworks by water adsorption[J]. Microporous and Mesoporous Materials, 2009, 120(3):325-330.
    [32] LI H, SHI W, ZHAO K, et al. Enhanced hydrostability in Ni-doped MOF-5[J]. Inorganic Chemistry, 2012, 51(17):9200-9207.
    [33] KARAGIARIDI O, BURY W, SARJEANT A A, et al. Synthesis and characterization of isostructural cadmium zeolitic imidazolate frameworks via solvent-assisted linker exchange[J]. Chemical Science,2012, 3(11):3256-3260.
    [34] LI T, SULLIVAN J E, ROSI N L. Design and preparation of a coreshell metal-organic framework for selective CO2capture[J]. Journal of the American Chemical Society, 2013, 135(27):9984-9987.
    [35] DECOSTE J B, PETERSON G W, SMITH M W, et al. Enhanced stability of Cu-BTC MOF via perfluorohexane plasma-enhanced chemical vapor deposition[J]. Journal of the American Chemical Society, 2012, 134(3):1486-1489.
    [36] CAI Y, ZHANG Y, HUANG Y, et al. Impact of alkyl-functionalized BTC on properties of copper-based metal-organic frameworks[J].Crystal Growth&Design, 2012, 12(7):3709-3713.
    [37] ZHANG S L, JIAO Z, YAO W X. A simple solvothermal process for fabrication of a metal-organic framework with an iron oxide enclosure for the determination of organophosphorus pesticides in biological samples[J]. Journal of Chromatography A, 2014, 1371:74-81.
    [38] CHEN X F, DING N, ZANG H, et al. Fe3O4@MOF core-shell magnetic microspheres for magnetic solid-phase extraction of polychlorinated biphenyls from environmental water samples[J].Journal of Chromatography A, 2013, 1304:241-245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700