用户名: 密码: 验证码:
长周期多芯手征光纤轨道角动量的调制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Modulation of orbital angular momentum in long periodchirally-coupled-cores fiber
  • 作者:崔粲 ; 王智 ; 李强 ; 吴重庆 ; 王健
  • 英文作者:Cui Can;Wang Zhi;Li Qiang;Wu Chong-Qing;Wang Jian;Institute of Optical Information, School of Science, Beijing Jiaotong University, Key Laboratory of Luminescence and Optical Information, Ministry of Education;State Key Laboratory on Integrated Optoelectronics;
  • 关键词:轨道角动量 ; 光纤 ; 光学涡旋 ; 模式
  • 英文关键词:orbital angular momentum;;fiber;;optical vortex;;mode
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:北京交通大学理学院光信息科学与技术研究所发光与光信息技术教育部重点实验室;集成光电子学国家重点联合实验室;
  • 出版日期:2019-03-11 17:09
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:61571035,61401017,61775012);; 集成光电子学国家重点联合实验室开放课题(批准号:IOSKL2018KF22)资助的课题~~
  • 语种:中文;
  • 页:WLXB201906020
  • 页数:8
  • CN:06
  • ISSN:11-1958/O4
  • 分类号:156-163
摘要
基于矢量模式耦合理论,在多模光纤中引入手性耦合纤芯结构,设计了一种光纤型光轨道角动量调制器.使用单根光纤,无需施加扭转或应力,可以实现任意光轨道角动量的调制.通过理论分析与数值仿真,研究了不同结构参数对轨道角动量模式纯度、传输损耗和有效折射率的影响.在中心纤芯和旁纤芯传播常数不变的前提下,旁纤芯数量对损耗影响较大,通过相位匹配条件计算得到的螺距可以在一定数值范围内浮动变化,两种纤芯的间距受限于模式损耗和光纤集成度.
        A type of fiber-based orbital angular momentum(OAM) modulator is designed according to transformation relation between OAM beam and optical fiber vector mode, together with mode-coupling theory, which is based on the combination of multimode fiber structure and chirally-coupled-cores structure. Instead of applying external force or grating etching to the fiber in the system, chirally-coupled-cores fiber can realize the modulation of any optical OAM by using single fiber at 1550 nm. Therefore, the test system is relatively simple.From the equation OAM_(±l,n)~(±σ)= HE_(l+1,n)~(even) ±i×HE_(l+1,n)~(odd), it can be seen that the OAM mode generated by long period chirally-coupled-cores fiber depends on the higher-order modes supported by the central fiber core.Therefore, the generation and modulation of any order OAM beam can be realized by changing the diameter of the central fiber core in theory. Through theoretical analysis and numerical simulation, the effects of different structure parameters on OAM modes are analyzed, including mode purity, mode transmission loss and effective refractive index. By keeping the propagation constants of the center core and side cores unchanged, the number of side cores has no effect on mode purity nor effective refractive index, but which is not for mode transmission loss. The loss of mode transmission increases with the increase of the number of side cores. However, it does not mean that the less number of side cores is a better case, in that the fiber symmetry and processing technology should also be considered. And the pitch calculated by the formula of phase matching condition can change in value within a certain numerical range without strongly affecting the mode purity and mode transmission loss.Pitch has a great influence on the effective refractive index of modes, therefore the pitch can be under control to change the difference in effective refractive index between OAM modes and reduce crosstalk between disparate modes. The distance between the center core and side cores of fiber has little effect on mode purity, great effect on mode transmission loss, but no effect on effective refractive index. Theoretically, the mode purity and mode transmission loss perform better with the distance between two kinds of cores increasing. But it will be limited by the fiber integration level.
引文
[1] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P1992 Phys. Rev. A 45 8185
    [2] Gong Y, Wang R, Deng Y, Zhang B, Nan W, Ning L, Pei W2017 IEEE Trans. Antenn. Propag. 65 2940
    [3] Yan X, Guo L, Cheng M, Li J 2018 Opt. Express 26 12605
    [4] Bai X, Chen H, Ma Y, Yang H 2018 Progress in Electro magnetics Research Symposium-spring St. Petersburg, Russia,May 22-25, 2017 p3105
    [5] Xing D, Liu J, Zeng X, Lu J, Yi Z 2018 Opt. Commun. 423200
    [6] Jiang X, Liang B, Cheng J C, Qiu C W 2018 Adv. Mater. 301800257
    [7] Wang A, Zhu L, Wang L, Ai J, Chen S, Wang J 2018 Opt.Express 26 10038
    [8] Donato M G, Messina E, Foti A, Smart T J, Jones P H, Iati M A, Saija R, Gucciardi P G, Marago O M 2018 Nanoscale10 1245
    [9] Zhou H L, Fu D Z, Dong J J, Pei Z, Chen D X, Cai X L, Li F L, Zhang X L 2017 Light-Sci. Appl. 6 e16251
    [10] Stefani A, Lwin R, Kuhlmey B T, Fleming S C 2018 Novel Optical Materials&Applications Zurich, Switzerland, July2-5, 2018 NoTh1D.2
    [11] Liang F, Padgett M J, Jian W 2017 Laser Photon. Rev. 111700183
    [12] Lin M, Yue G, Liu P, Liu J 2017 IEEE Trans. Antenn.Propag. 65 3510
    [13] Efron U 1994 Spatial Light Modulator Technology:Materials,Devices, and Applications(Vol. 47)(Florida:CRC Press)pp287-349
    [14] Willner A E,Huang H,Yan Y,Hen Y,Ahmed N,Xie G,Bao C, Li L, Cao Y, Zhao Z, Wang J, Lavery M P J, Tur M,Ramachandran S, Molisch A F, Ashrafi N, Ashrafi S 2015Adv. Opt. Photon. 7 66
    [15] Cheng C, Zhou G, Gai Z, Xu M, Hou Z, Xia C, Yuan J J2016 Opt. Commun. 368 27
    [16] McGloin D, Simpson N B, Padgett M J 1998 Appl. Opt. 37469
    [17] Ramachandran S 2010 IEEE Photinic Societys Meeting Denver, CO, USA, November 7-11, 2010 p679
    [18] Alexeyev C N 2012 Appl. Opt. 51 6125
    [19] Swan M C, Liu C H, Guertin D,Jacobsen N, Tankala K,Galvanauskas A 2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference San Diego, CA,USA,February 24-28, 2008 paper OWU2
    [20] Ma X, Liu C H, Chang G, Galvanauskas A 2011 Opt. Express19 26515
    [21] Du C, Chen W, Li S Y, Mo Q, Zhang T, Ke Y L 2013 CN Patent CN103204629B(in Chinese)[杜城,陈伟,李诗愈,莫琦,张涛,柯一礼2013中国专利CN103204629B]
    [22] Nicolet A, Zolla F, Guenneau S 2004 Eur. Phys. J. Appl.Phys. 28 153
    [23] Xu H 2013 Ph. D. Dissertation(Hefei:University of Science and Technology of China)(in Chinese)[许华醒2013博士论文(合肥:中国科学技术大学)]
    [24] Zheng S, Wang J 2017 Opt. Express 25 18492
    [25] Li S, Wang J 2014 Sci. Rep. 4 3853

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700