用户名: 密码: 验证码:
低水平镉暴露对破骨细胞分化的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Low Level Cadmium Exposure on Osteoclast Differentiation
  • 作者:贺双江 ; 宋瑞龙 ; 曹莹 ; 刘庆羊 ; 张闯 ; 刘宗平
  • 英文作者:HE Shuangjiang;SONG Ruilong;CAO Ying;LIU Qingyang;ZHANG Chuang;LIU Zongping;College of Veterinary Medicine, Yangzhou University;Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses;
  • 关键词: ; 破骨细胞 ; RAW264.7细胞 ; 骨质丢失
  • 英文关键词:cadmium;;osteoclast;;RAW264.7 cells;;bone loss
  • 中文刊名:XMSY
  • 英文刊名:Chinese Journal of Animal and Veterinary Sciences
  • 机构:扬州大学兽医学院;江苏高校动物重要疫病与人兽共患病防控协同创新中心;
  • 出版日期:2019-03-20 14:29
  • 出版单位:畜牧兽医学报
  • 年:2019
  • 期:v.50
  • 基金:国家重点研发计划支持项目(2016YFD0501208);; 国家自然科学基金(31502128;31702304;31702204);; 江苏省自然科学基金青年基金(BK20150447);; 江苏高校优势学科建设工程资助项目
  • 语种:中文;
  • 页:XMSY201903023
  • 页数:7
  • CN:03
  • ISSN:11-1985/S
  • 分类号:211-217
摘要
为研究低水平镉(Cd)暴露对破骨细胞(osteoclast,OC)分化的影响,试验以RAW264.7细胞(单核巨噬细胞系)为材料,在巨噬细胞集落刺激因子(M-CSF)和核因子κB受体活化因子配体(RANKL)存在的条件下,用不同浓度Cd处理4 d;利用CCK-8法检测破骨细胞及其前体细胞活性变化,抗酒石酸酸性磷酸酶(TRAP)染色试验观察破骨细胞生成,激光共聚焦显微镜观察破骨细胞形态变化,蛋白免疫印迹(Western blot)技术和荧光定量聚合酶链式反应(qRT-PCR)检测破骨细胞标志性蛋白及其mRNA水平。结果显示,随着Cd浓度升高,细胞活力受到明显的抑制(P<0.01),并呈浓度-效应关系;与对照组相比,破骨细胞产生的数目和面积均显著或极显著下降(P<0.05或P<0.01);2、5μmol·L~(-1) Cd处理组破骨细胞封闭带的形成均受到抑制;2和5μmol·L~(-1) Cd处理组破骨细胞特异性蛋白及其mRNA表达量均显著或极显著下降(P<0.05或P<0.01),并呈剂量依赖性。结果表明,低微摩尔水平镉暴露能够抑制破骨细胞的分化。
        In order to study the effect of low level cadmium(Cd) exposure on osteoclast(OC) differentiation, RAW264.7 cell(mononuclear macrophage lineage) was used as materials. In the presence of macrophage colony stimulating factor(M-CSF) and receptor-activated nuclear factor κB ligand(RANKL), treatment of different concentrations of Cd were conducted for 4 days. CCK-8 assay was used to detect changes in the viability of osteoclasts and their precursor cells. Tartrate-resistant acid phosphatase(TRAP) staining assay was used to observe the osteoclastogenesis. Laser scanning confocal microscopy was used to observe morphological changes of osteoclasts. The expression of osteoclast marker proteins and mRNA expression were detected by Western blot and qRT-PCR. The results showed that with the increase of Cd concentration, cell viability was significantly inhibited(P<0.01),which showed a concentration-effect relationship. Compared with the control group, the number and area of osteoclast production were significantly or extremely significantly decreased(P<0.05 or P<0.01). In the 2 and 5 μmol·L~(-1) Cd treatment groups, the formation of osteoclasts' sealing zone was inhibited. The osteoclast-specific protein and mRNA expression levels of 2 and 5 μmol·L~(-1) Cd groups were significantly or extremely significantly decreased(P<0.05 or P<0.01), which showed the dose effect. The above results indicate that low micromolar cadmium exposure can inhibit the differentiation of osteoclasts.
引文
[1] XIE D D, SHENG Z F. Low-level cadmium exposure and bone health[J]. J Bone Miner Res, 2017, 32(2):419.
    [2] WALLIN M, BARREGARD L, SALLSTEN G, et al. Response to “low-level cadmium exposure and bone health”[J]. J Bone Miner Res, 2017, 32(2):420-421.
    [3] SINGHANIA S, SINGH S, PARIKH P. Cadmium as a risk factor for osteoporosis in COPD[J]. Int J Tuberc Lung Dis, 2017, 21(2):244.
    [4] SCIMECA M, FEOLA M, ROMANO L, et al. Heavy metals accumulation affects bone microarchitecture in osteoporotic patients[J]. Environ Toxicol, 2017, 32(4):1333-1342.
    [5] WEAVER V M, KIM N S, JAAR B G, et al. Associations of low-level urine cadmium with kidney function in lead workers[J]. Occup Environ Med, 2011, 68(4):250-256.
    [6] CHEN X, ZHU G Y, GU S Z, et al. Effects of cadmium on osteoblasts and osteoclasts in vitro[J]. Environ Toxicol Pharmacol, 2009, 28(2):232-236.
    [7] LIU W, ZHAO H Y, WANG Y, et al. Calcium-calmodulin signaling elicits mitochondrial dysfunction and the release of cytochrome c during cadmium-induced apoptosis in primary osteoblasts[J]. Toxicol Lett, 2014, 224(1):1-6.
    [8] V??N?NEN H K, LAITALA-LEINONEN T. Osteoclast lineage and function[J]. Arch Biochem Biophys, 2008, 473(2):132-138.
    [9] WALLIN M, BARREGARD L, SALLSTEN G, et al. Low-level cadmium exposure is associated with decreased bone mineral density and increased risk of incident fractures in elderly men:the MrOS sweden study[J]. J Bone Miner Res, 2016, 31(4):732-741.
    [10] AKESSON A, BJELLERUP P, LUNDH T, et al. Cadmium-induced effects on bone in a population-based study of women[J]. Environ Health Perspect, 2006, 114(6):830-834.
    [11] CHEN X, GAN C H, ZHU G Y, et al. Benchmark dose for estimation of cadmium reference level for osteoporosis in a Chinese female population[J]. Food Chem Toxicol, 2013, 55:592-595.
    [12] TAHA M M, ABDALLAH H, SHAHY E M, et al. Impact of occupational cadmium exposure on bone in sewage workers [J]. Int J Occup Environ Health, 2018, 24(3-4):101-108.
    [13] LIM H S, LEE H H, KIM T H, et al. Relationship between heavy metal exposure and bone mineral density in korean adult[J]. J Bone Metab, 2016, 23(4):223-231.
    [14] 宋瑞龙. OPG对破骨细胞分化过程中细胞骨架的影响及其分子机理[D]. 扬州:扬州大学, 2014.SONG R L. Influences of osteoprotegerin on the cytoskeleton of osteoclast and the involve signalling pathways in the process of osteoclast differentiation[D]. Yangzhou:Yangzhou University, 2014. (in Chinese)
    [15] BRZóSKA M M, MONIUSZKO-JAKONIUK J. Low-level lifetime exposure to cadmium decreases skeletal mineralization and enhances bone loss in aged rats[J]. Bone, 2004, 35(5):1180-1191.
    [16] ENGSTR?M A, MICHA, et al. Long-term cadmium exposure and the association with bone mineral density and fractures in a population-based study among women[J]. J Bone Miner Res, 2011, 26(3):486-495.
    [17] LIU W, DAI N N, WANG Y, et al. Role of autophagy in cadmium-induced apoptosis of primary rat osteoblasts[J]. Sci Rep, 2016, 6:20404.
    [18] 赵鸿雁. 骨保护素对破骨细胞及其前体黏附结构和融合的影响[D]. 扬州:扬州大学, 2015.ZHAO H Y. Effects of osteoprotegerin on the peripheral adhesive structures and fusion of (pre)osteoclast[D]. Yangzhou:Yangzhou University, 2015. (in Chinese)
    [19] TAKITO J, INOUE S, NAKAMURA M. The sealing zone in osteoclasts:a self-organized structure on the bone[J]. Int J Mol Sci, 2018, 19(4):984.
    [20] BATSIR S, GEIGER B, KAM Z. Dynamics of the sealing zone in cultured osteoclasts[J]. Cytoskeleton (Hoboken), 2017, 74(2):72-81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700