用户名: 密码: 验证码:
化学链干重整联合制氢热力学分析及实验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermodynamic and experimental analysis of chemical looping dry reforming with hydrogen production system
  • 作者:朱珉 ; 陈时熠 ; 李蒙 ; 宋业恒 ; 张磊 ; 向文国
  • 英文作者:ZHU Min;CHEN Shiyi;LI Meng;SONG Yeheng;ZHANG Lei;XIANG Wenguo;Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment,Southeast University;Sinopec Nanjing Engineering & Construction Incorporation;Luoyang R&D Center of Technology, Sinopec Engineering (Group) Co.Ltd;
  • 关键词:甲烷 ; 制氢 ; 二氧化碳捕集 ; 合成气
  • 英文关键词:methane;;hydrogen production;;CO_2 capture;;syngas
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:东南大学能源与环境学院能源热转换及其过程测控教育部重点实验室;中石化南京工程有限公司;中石化炼化工程(集团)股份有限公司洛阳技术研发中心;
  • 出版日期:2019-02-26 09:17
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家自然科学基金项目(51606038);; 江苏省科技计划青年基金项目(BK20160672)
  • 语种:中文;
  • 页:HGSZ201906024
  • 页数:8
  • CN:06
  • ISSN:11-1946/TQ
  • 分类号:226-233
摘要
提出了一种化学链甲烷干重整联合制氢工艺。该工艺由还原反应器、干重整反应器、蒸汽反应器和空气反应器组成,在实现制氢的同时获得可变H_2/CO比的合成气。借助ASPEN plus软件和小型流化床实验台,在等温条件下,温度900℃,采用Fe_2O_3/Al_2O_3载氧体,对该工艺进行热力学分析和实验验证。结果显示,当铁氧化物被还原至FeO/Fe时,干重整反应器内甲烷转化率可以达到98%,CO产率可以达到94%。干重整反应器中同时发生甲烷干重整和部分氧化反应,载氧体内部晶格氧可以有效降低积炭并提高合成气H_2/CO比。积炭发生于晶格氧消耗殆尽时。积炭进入蒸汽反应器,发生气化反应,降低氢气纯度。
        A chemical chain methane dry reforming combined hydrogen production process was proposed. The process consists of a reduction reactor, a dry reforming reactor, a steam reactor and an air reactor to obtain a synthesis gas having a variable H_2/CO ratio while achieving hydrogen production. In this study, thermodynamic validation was carried out at 900℃ and 1.01×10~5 Pa, and experiments were performed to verify the feasibility of the process in a fluidized-bed reactor using Fe_2O_3/Al_2O_3 oxygen carrier. It was found that a high conversion of CO_2 and CH_4 to syngas can be achieved on the reduced iron oxygen carrier. When the reduction extent of the oxygen carrier was 33%, the CH_4 conversion and CO yield over 98% and 94%, respectively. During the dry reforming stage, the ratio of CH_4/CO_2 was variable. Partial oxidation of excess CH_4 by active lattice oxygen increased H_2/CO molar ratio of syngas and reduced the carbon deposition. Carbon deposition formed since the active lattice oxygen has been depleted, which would react with steam in the next steam oxidizer and causing the hydrogen purity reduced.
引文
[1]赵健,周伟,汪吉辉,等.甲烷干重整研究进展[J].天然气化工(C1化学与化工), 2011,(6):53-60+65.Zhao J, Zhou W, Wang J H, et al. Research progress in dryreforming of methane[J]. Natural Gas Chemical Industry, 2011,(6):53-60+65.
    [2]吴王平,江鹏,苏少航,等.贵金属催化剂在甲烷干重整中的研究[J].常州大学学报(自然科学版), 2015, 27(4):31-37.Wu W P, Jiang P, Su S H, et al. Review on noble metal catalysts for dry reforming of methane[J]. Journal of Changzhou University(Natural Science Edition), 2015, 27(4):31-37.
    [3] Pakhare D, Spivey J. A review of dry(CO2)reforming of methane over noble metal catalysts[J]. Chemical Society Reviews, 2014,43:7813-7837.
    [4] Tao X M, Bai M G, Li X, et al. CH4-CO2reforming by plasma—challenges and opportunities[J]. Progress in Energy and Combustion Science, 2011, 37:113-124.
    [5] Caprariis B D, Filippis P D, Palma V, et al. Rh, Ru and Pt ternary perovskites type oxides BaZr(1-x)Mex O3for methane dry reforming[J]. Applied Catalysis A:General, 2016, 517:47-55.
    [6] Luyben W L. Design and control of the dry methane reforming process[J]. Industrial&Engineering Chemistry Research, 2014,53(37):14423-14439.
    [7]阮勇哲,卢遥,王胜平.甲烷干重整Ni基催化剂失活及抑制失活研究进展[J].化工进展, 2018, 37(10):3850-3857.Ruan Y Z, Lu Y, Wang S P. Progress in deactivation and antideactivation of nickel-based catalysts for methane dry reforming[J]. Chemical Industry and Engineering Progress, 2018, 37(10):3850-3857.
    [8] Zeng S, Zhang L, Zhang X, et al. Modification effect of natural mixed rare earths on Co/gamma-Al2O3catalysts for CH4/CO2reforming to synthesis gas[J]. International Journal of Hydrogen,2012, 37(13):9994-10001.
    [9] Vasiliades M A, Makri M M, Djinoviec P, et al. Dry reforming of methane over 5 wt%Ni/Ce1-xPrx O2-δcatalysts:performance and characterization of active and inactive carbon by transient isotopic techniques[J]. Applied Catalysis B:Environmental, 2016. 197:168-183.
    [10] Adanez J, Abad A, Garcia L F, et al. Progress in chemical-looping combustion and reforming technologies[J]. Progress in Energy and Combustion Science, 2012, 38(2):215-282.
    [11] Ishida M, Kawamura K. Energy and Exergy analysis of a chemical process system with distributed parameters based on the energydirection factor diagram[J]. Industrial Engineering and Chemistry Process Design&Development, 1982, 21(4):690-702.
    [12]金红光,王宝群.化学能梯级利用机理探讨[J].工程热物理学报, 2004, 25(2):181-184.Jin H G, Wang B Q. Principle of cascading utilization of chemical energy[J]. Journal of Engineering Thermophysics, 2004, 25(2):181-184.
    [13] Najera M, Solunke R, Gardner T, et al. Carbon capture and utilization via chemical looping dry reforming[J]. Chemical Engineering Research and Design, 2011, 89(9):1533-1543.
    [14] Bhavsar S, Najera M, Veser G. Chemical looping dry reforming as novel, intensified process for CO2activation[J]. Chemical Engineering and Technology, 2012, 35(7):1281-1290.
    [15] Kang D, Lee M, Lim H S, et al. Chemical looping partial oxidation of methane with CO2utilization on the ceria-enhanced mesoporous Fe2O3oxygen carrier[J]. Fuel, 2015, 215:787-798.
    [16] Kang D, Lim H S, Lee M, et al. Syngas production on a Nienhanced Fe2O3/Al2O3oxygen carrier via chemical looping partial oxidation with dry reforming of methane[J]. Applied Energy, 2018,211:174-186.
    [17] Zhu M, Chen S Y, Ma S W, et al. Carbon formation on iron-based oxygen carriers during CH4reduction period in chemical looping hydrogen generation process[J]. Chemical Engineering Journal,2017, 325:322–331.
    [18] Galvita V V, Poelman H, Detavernier C, et al. Catalyst-assisted chemical looping for CO2conversion to CO[J]. Applied Catalysis B:Environmental, 2015, 164:184-191.
    [19] Mattisson T, Lyngfelt A, Cho P. The use of iron oxide as an oxygen carrier in chemical-looping combustion of methane with inherent separation of CO2[J]. Fuel, 2001, 80(13):1953-1962.
    [20] Bohn C D, Cleeton J P, Muller C R, et al. The kinetics of the reduction of iron oxide by carbon monoxide mixed with carbon dioxide[J]. AIChE Journal, 2017, 56(4):1016–1029.
    [21] Debtanu M, Bryan J H, Yolanda A D, et al. Earth abundant perovskite oxides for low temperature CO2conversion[J]. Energy Environmental Science, 2018, 11:648-659.
    [22] Kathe M, Fryer C, Sandvik P, et al. Modularization strategy for syngas generation in chemical looping methane reforming systems with CO2as feedstock[J]. AIChE Journal, 2017, 63(8):3343–3360.
    [23] Kathe M, Empfield A, Sandvik P, et al. Utilization of CO2as a partial substitute for methane feedstock in chemical looping methane–steam redox processes for syngas production[J]. Energy Environmental Science, 2017, 10(6):1345–1349.
    [24]许迪恺, Tong Andrew,曾亮,等.铁基移动床化学链技术进展[J].化工学报, 2014, 65(7):2410-2415.Xu D K, Tong A, Zeng L, et al. Development on iron-based moving bed chemical looping process[J]. CIESC Journal, 2014, 65(7):2410-2415.
    [25] Kang K S, Kim C H, Bae K K, et al. Modeling a counter-current moving bed for fuel and steam reactors in the TRCL process[J].International Journal of Hydrogen, 2012, 37(4):3251–3260.
    [26] Xiang W, Chen S, Xue Z, et al. Investigation of coal gasification hydrogen and electricity co-production plant with three-reactors chemical looping process[J]. International Journal of Hydrogen Energy, 2010, 35(16):8580-8591.
    [27] Xue Z, Chen S, Wang D, et al. Design and fluid dynamic analysis of a three-fluidized-bed reactor system for chemical-looping hydrogen generation[J]. Industrial&Engineering Chemistry Research, 2012, 51(11):4267-4278.
    [28]史奇良,陈时熠,薛志鹏,等.铁基载氧体化学链制氢特性实验研究[J].中国电机工程学报, 2011, 31(S1):168-174.Shi Q L, Chen S Y, Xue Z P, et al. Experimental investigation of chemical looping hydrogen generation using iron oxides as oxygen carrier[J]. Proceedings of the CSEE, 2011, 31(S1):168-174.
    [29] Zhu M, Chen S Y, Soomro A, et al. Effects of supports on reduction activity and carbon deposition of iron oxide for methane chemical looping hydrogen generation[J]. Applied Energy, 2018,225:912–921.
    [30]玄伟伟,张建胜.化学链燃烧铁基载氧体还原反应积炭趋势[J].化工学报, 2012, 63(3):904-909.Xuan W W, Zhang J S. Carbon deposition during reduction in chemical-looping combustion with Fe-based oxygen carriers[J].CIESC Journal, 2012, 63(3):904-909.
    [31] Cheng Z, Qin L, Guo M, et al. Oxygen vacancy promoted methane partial oxidation over iron oxide oxygen carriers in the chemical looping process[J]. Physical Chemistry Chemical Physics, 2016, 18(47):32418–32428.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700