用户名: 密码: 验证码:
生物炭施用对节水灌溉稻田土壤酶活性的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of Biochar Application on Soil Enzyme Activities of Paddy Fields under Water-saving Irrigation
  • 作者:江赜伟 ; 杨士红 ; 李育华 ; 丁洁 ; 孙潇
  • 英文作者:JIANG Ze-wei;YANG Shi-hong;LI Yu-hua;DING Jie;SUN Xiao;College of Agricultural Engineering,Hohai University;State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering,Hohai University;Water Affairs Bureau of Jiangning District,Nanjing;
  • 关键词:节水灌溉 ; 生物炭 ; 稻田土壤酶活性
  • 英文关键词:water-saving irrigation;;biochar;;paddy field enzyme activities
  • 中文刊名:JSGU
  • 英文刊名:Water Saving Irrigation
  • 机构:河海大学农业工程学院;河海大学水文水资源与水利工程科学国家重点实验室;南京市江宁区水务局;
  • 出版日期:2019-05-05
  • 出版单位:节水灌溉
  • 年:2019
  • 期:No.285
  • 基金:国家自然科学基金(51579070、51879076);; 中央高校业务费项目(2018B55814、2018B34114);; 江苏省高校优秀科技创新团队项目
  • 语种:中文;
  • 页:JSGU201905012
  • 页数:6
  • CN:05
  • ISSN:42-1420/TV
  • 分类号:61-66
摘要
为探究生物炭施用对节水灌溉稻田土壤酶活性的影响,基于田间试验,分析了不同水碳调控情景下土壤酶随土层深度及水稻生长的变化规律。结果表明:节水灌溉条件下,施加生物炭对土壤酶活性有一定的提高作用,随着生物炭施用量的增加而增加,但在分蘖期的0~10 cm土层出现了降低。同对照相比,中量(20 t/hm~2)和高量(40 t/hm~2)生物炭施用处理0~40 cm土层的土壤过氧化氢酶活性分别增加了1.89%~4.64%和6.67%~8.75%,蔗糖酶活性分别增加了3.21%~23.38%和35.26%~73.43%;与常规灌溉相比,控制灌溉0~40 cm土层土壤过氧化氢酶活性和土壤蔗糖酶活性均值分别提高了4.26%~12.44%和4.88%~20.98%。不同生物炭施加量处理的土壤蔗糖酶活性在分蘖期差异显著,在水稻生长的中后期逐渐减弱。稻田各生育阶段的土壤过氧化氢酶酶活性随土壤深度增加先增后减,土壤蔗糖酶活性基本上随土层加深逐渐降低。节水灌溉和生物炭施用的联合应用可以提高稻田土壤酶活性,且高量生物炭施用效果更加明显。
        In order to explore the effect of biochar application on soil enzyme activities in water-saving irrigation paddy fields,the changes of soil enzyme activities with soil depth and rice growth under different water-carbon regulation scenarios were analyzed based on field experiments in Taihu Lake region in China. The results showed that under water-saving irrigation,the application of biochar had a certain effect on improving soil enzyme activity. With the increase of biochar application amount,the effect of biochar on soil hydrogen peroxidase activity was weaker than that of saccharase. Compared with the control treatment,the soil hydrogen peroxidase activities was increased by1.89% ~ 4.64% and 6.67% ~ 8.75%,respectively,when treated with biochar application at 20 t/hm~2 and 40 t/hm~2,and saccharase activity was increased by 3. 21% ~ 23. 38% and 35. 26% ~ 73. 43% respectively. Water-saving irrigation increased the activities of soil hydrogen peroxidase and saccharase,and the degree of improvement gradually increased with the growth of rice,compared with flooding irrigation.Under water-saving irrigation,the activities of soil hydrogen peroxidase and saccharase in paddy fields were increased by 4.26% ~ 12.44%and 4.88% ~ 20.98%,respectively,compared with conventional irrigation. The soil saccharase activities of different biochar application rates were significantly different at the tillering stage,and decreased gradually during the middle and late stages of rice growth. The soil hydrogen peroxidase activities at the growth stage of rice increased first and then decreased with the increase of soil depth,and the soil saccharase activity decreased gradually with the deepening of soil layer. Therefore,the coupling of water-saving irrigation and biochar application is a recommended water-carbon management mode for paddy fields,which significantly increased the soil enzyme activities in paddies.
引文
[1] VAN GROENIGEN K J,QI X,OSENBERG C W,et al. Faster decomposition under increased atmospheric CO2limits soil carbon storage[J]. Science,2014,344(6 183):508-509.
    [2] HEIMANN M,REICHSTEIN M. Terrestrial ecosystem carbon dynamics and climate feedbacks[J]. Nature,2008,451(7 176):289-292.
    [3] XIA Jianyang,NIU Shuli,WAN Shiqiang. Response of ecosystem carbon exchange to warming and nitrogen addition during two hydrologically contrasting growing seasons in a temperate steppe[J]. Global Change Biology,2009,15(6):1 544-1 556.
    [4] PAZ-FERREIRO Jorge,FU Shenglei,MENDEZ Ana,et al. Biochar modifies the thermodynamic parameters of soil enzyme activity in a tropical soil[J]. Journal of Soils and Sediments,2015,15(3):578-583.
    [5] RIETZ D N,HAYNES R J. Effects of irrigation-induced salinity and sodicity on soil microbial activity[J]. Soil Biology and Biochemistry,2003,35(6):845-854.
    [6]卢布,陈印军,吴凯.我国农业结构现状及未来变化趋势研究[J].农业技术经济,2005,(2):52-57.
    [7] LIU Guangming,ZHANG Xuechen,WANG Xiuping,et al. Soil enzymes as indicators of saline soil fertility under various soil amendments[J]. Agriculture,Ecosystems and Environment,2017(237):274-279.
    [8] RILLIG Matthias C,LEHMANN Johannes,THIES Janice,et al. Biochar effects on soil biota:a review[J]. Soil Biology&Biochemistry,2011,43(9):1 812-1 836.
    [9] PAZ-FERREIRO J,FU S,MENDEZ Ana,et al. Interactive effects of biochar and the earthworm Pontoscolex corethrurus,on plant productivity and soil enzyme activities[J]. Journal of Soils and Sediments,2014,14(3):483-494.
    [10] BAILEY Vanessa L,FANSLER Sarah J,SMITH Jeffrey L,et al.Reconciling apparent variability in effects of biochar amendment on soil enzyme activities by assay optimization[J]. Soil Biology&Biochemistry,2011,43:296-301.
    [11] YANAI Yosuke,TOYOTA Koki,OKAZAKI Masanori. Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments[J]. Soil Science and Plant Nutrition,2007,53(2):181-188.
    [12] JIN Hongyan. Characterization of microbial liff colonizing biochar and biochar-amended soils[D] Cornell University,2010.
    [13]张学琴,马娟娟,孙西欢,等.不同灌水方法对苹果树果实膨大期根系生长和土壤酶活性的影响研究[J].节水灌溉,2016(3):1-5.
    [14]陈红军,孟虎,陈钧鸿. 2种生物农药对土壤蔗糖酶活性的影响[J].生态环境,2008,17(2):584-588.
    [15] TU C M. Effect of four experimental insecticides on enzyme activities and levels of adenosine triphosphate in mineral and organic soils[J].Journal of Environmental Science and Health,Part B,1991,25(6):787-800.
    [16]尚杰,耿增超,陈心想,等.生物炭对土壤酶活性和糜子产量的影响[J].干旱地区农业研究,2015(2):146-151,158.
    [17]潘全良,宋涛,陈坤,等.连续6年施用生物炭和炭基肥对棕壤生物活性的影响[J].华北农学报,2016,31(3):225-232.
    [18]黄剑.生物炭对土壤微生物量及土壤酶的影响研究[D].北京:中国农业科学院,2012.
    [19]肖新,朱伟,肖靓,等.适宜的水氮处理提高稻基农田土壤酶活性和土壤微生物量碳氮[J].农业工程学报,2013,29(21):91-98.
    [20〗陈心想,耿增超,王森,等.施用生物炭后觩土土壤微生物及酶活性变化特征[J].农业环境科学学报,2014,33(4):751-758.
    [21]曲晶晶.生物质炭稻田施用下的土壤固碳减排效应及其对水稻生产力的影响[D].南京:南京农业大学,2012.
    [22] OHLSON Mikael,TRYTERUD Elling. Interpretation of the charcoal record in forest soils:forest fires and their production and deposition of macroscopic charcoal[J]. The Holocene,2016,10(4):519-525.
    [23] CZIMCZIK Claudia I,MASIELLO Caroline A. Controls on black carbon storage in soils[J]. Global Biogeochemical Cycles,2007,21(3).
    [24] GLASER Bruno,LEHMANN Johannes,ZECH Wolfgang. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal:a review[J]. Biology and Fertility of Soils,2002,35(4):219-230.
    [25] YANG X,LIU J,MCGROUTHER K,et al. Effect of biochar on the extractability of heavy metals(Cd,Cu,Pb and Zn)and enzyme activity in soil[J]. Environ Sci Pollut Res Int,2016,23(2):974-984.
    [26]高瞡!.稻田土壤氧化酶活性与有机碳转化关系研究[D].武汉:华中农业大学,2010.
    [27]万忠梅,宋长春,郭跃东,等.毛苔草湿地土壤酶活性及活性有机碳组分对水分梯度的响应[J].生态学报,2008,28(12):5 981-5 986.
    [28] CHEN Ruirui,SENBAYRAM Mehmet,BLAGODATSKY Sergey,et al. Soil C and N availability determine the priming effect:microbial N mining and stoichiometric decomposition theories[J]. Global Change Biology,2014,20(7):2 356-2 367.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700