用户名: 密码: 验证码:
枸杞幼苗对盐胁迫的生理响应
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Physiological Response of Lycium barbarum L. Seedlings to Salt Stress
  • 作者:白丽丽 ; 李玉龙 ; 巩健 ; 李豪 ; 谢志霞 ; 王文颖 ; 徐进
  • 英文作者:BAI Lili;LI Yulong;GONG Jian;LI Hao;XIE Zhixia;WANG Wenying;XU Jin;College of Life Science and Geography,Qinghai Normal University;Xishuangbanna Tropical Botanical Garden,Chinese Academy of Sciences;Center for Agricultural Resources Research,Institute of Genetics and Developmental Biology,Chinese Academy of Sciences;Pharmaceutical and Biological Engineering Department,Zibo Vocational Institute;College of Forestry,Shanxi Agricultural University;
  • 关键词:枸杞 ; 盐胁迫 ; 氧化伤害 ; 抗氧化酶 ; 渗透调节
  • 英文关键词:Lycium barbarum L;;salt stress;;oxidative damage;;antioxidant enzymes;;osmoregulation
  • 中文刊名:NCPJ
  • 英文刊名:Farm Products Processing
  • 机构:青海师范大学生命科学学院;中国科学院西双版纳热带植物园;中国科学院遗传与发育生物学研究所农业资源研究中心;淄博职业学院制药与生物工程系;山西农业大学林学院;
  • 出版日期:2019-04-30
  • 出版单位:农产品加工
  • 年:2019
  • 期:No.478
  • 基金:青海省创新平台建设专项项目(2017-ZJ-Y20)
  • 语种:中文;
  • 页:NCPJ201908014
  • 页数:7
  • CN:08
  • ISSN:14-1310/S
  • 分类号:56-62
摘要
探明枸杞对盐胁迫的生理响应,为今后更好地利用枸杞改良盐碱地和生产高品质的枸杞子提供理论基础。以枸杞的优良品种(海杞)幼苗为试验材料,采用生理生化方法,分析不同盐浓度(0,50,100,150 mmol/L)、不同时间(100 mmol/L Na Cl处理下的第0,1,5,10 d)的盐胁迫下SOD,CAT,POD,APX等抗氧化酶的活性,以及过氧化产物(MDA)、可溶性糖类、脯氨酸及可溶性蛋白的含量。结果表明,随盐浓度升高,枸杞叶片和根中的细胞膜氧化伤害显著增多,且叶片受到的伤害比根严重。不同盐浓度的处理下,除了SOD、叶片和根受CAT,APX和POD重要的保护作用,但在两者之间的作用不同;且可溶性糖、可溶性蛋白质和脯氨酸迅速积累。在较长时间的盐胁迫条件下(5,10 d),后期抗氧化酶(SOD,CAT,POD)及渗透调节物质(如可溶性蛋白质和脯氨酸)的累积可以保证枸杞耐受长时间的盐胁迫。不同盐浓度和不同时间盐处理下,渗透调节物质(特别是可溶性蛋白质和脯氨酸)和抗氧化酶协同作用清除活性氧自由基,调节了枸杞对盐胁迫的响应,降低了氧化伤害,提高了枸杞的耐盐性,说明枸杞对盐胁迫具有一定的耐受性,适合在盐碱地种植。
        To elucidate the physiological mechanisms of Lycium barbarum L. in response to salt stress, we investigated the antioxidant responses to salt stress in seedlings of Lycium barbarum L. 'Haiqi' under different salt concentrations(0,50,100,150 mmol/L) and different periods(100 mmol/L Na Cl lasted 1, 5, 10 d). Respectively, by examining the antioxidative enzyme activities,contents of soluble sugar,MDA,proline,and soluble proteins. Leaves and roots in Lycium barbarum L.seedlings were protected by CAT,APX and POD,rather than SOD,under different salt concentrations,but the protective effects of each of them differed between leaves and roots. Moreover, soluble sugar, soluble protein and proline rapidly accumulated. In response to the time of salt stress,the increased activities of antioxidant enzymes(SOD,CAT,POD) and accumulation of the osmotic regulators(such as soluble protein and proline) in the later period(5,10 d) can attribute to the salt resistance of Lycium barbarum L. seedlings. Overall,in response to different concentrations of salt stress and stress period,osmotic regulators(especially soluble protein and proline) and antioxidant system cooperated to scavenge reactive oxygen species(ROS),regulated the response of Lycium barbarum L. to salt stress,reduced oxidative damage,and improved the salt tolerance of Lycium barbarum L.,indicating that Lycium barbarum L. has a certain tolerance to salt stress. It is suitable for planting in saline alkali soil.
引文
[1] Golldack D,Li C,Mohan H, et al. Tolerance to drought and salt stress in plants:unraveling the signaling networks[J]. Frontiers in Plant Science, 2014(5):151-154.
    [2] Rizwan M, Ali S,Ibrahim M, et al. Mechanisms of silicon-mediated alleviation of drought and salt stress in plants:A review[J]. Environmental Science and Pollution Research, 2015, 22(20):15 416-15 431.
    [3] Kandoi D,Mohanty S, Tripathy B C. Overexpression of plastidic maize NADP-malate dehydrogenase(ZmNADPMDH)in A rabidopsis thaliana confers tolerance to salt stress[J]. Protoplasma, 2018(2):547-563.
    [4] Ziogas V,Tanou G,Belghazi M, et al. Characterization ofβ-amino-andγ-amino butyric acid-induced citrus seeds germination under salinity using nano LC-MS/MS analysis[J].Plant Cell Reports, 2017, 36(5):787-789.
    [5]麻莹,王晓苹,姜海波,等.盐碱胁迫下碱地肤体内的有机酸积累及其草酸代谢特点[J].草业学报,2017,26(7):158-165.
    [6] Kavi Kishor P B, Hong Z, Miao G H, et al. Over expression ofΔ-pyrroline-5-carb oxylate synthetase increases proline production and confers osmotolerance in transgenic plants[J]. Plant Physiol, 1995(1):387-391.
    [7] Rhee S G, Lee S K. Differential function of catalase, glutathione peroxidase, and peroxiredoxin in mouse red blood cells[J]. Free Radical Biology and Medicine, 2017(1):354-360
    [8]刘凤荣,陈火英,刘杨,等.盐胁迫下不同基因型番茄可溶性物质含量的变化[J].植物生理与分子生物学学报,2004,30(1):99-104.
    [9]惠红霞,许兴,李前荣.外源甜菜碱对盐胁迫下枸杞光合功能的改善[J].西北植物学报,2003,23(12):2 137-2 142.
    [10] Anjum F, Rishi V, Ahmad F. Compatibility of osmolytes with Gibbs energy of stabilization of proteins[J]. Biochim-ica et Biophysica Acta(BBA)-Protein Structure and Molecular Enzymology, 2000(1):75-84.
    [11]张雯莉,刘玉冰,刘立超.盐胁迫对枸杞(Lycium barbarum)叶片生理的影响[J].中国沙漠,2018,38(2):294-299.
    [12]张潭,唐达,李思思,等.盐碱胁迫对枸杞幼苗生物量积累和光合作用的影响[J].西北植物学报,2017(12):2 474-2 482.
    [13]张荣梅,马彦军.NaCl胁迫对黑果枸杞叶片生理指标的影响[J].甘肃农业大学学报,2017, 52(4):110-117.
    [14]吴成龙,尹金来,徐阳春,等.碱胁迫对菊芋幼苗生长及其光合作用和抗氧化作用的影响[J].西北植物学报,2006,26(3):447-454.
    [15] Ribeiro C W, Korbes A P, Garighan J A, et al. Rice peroxisomal ascorbate peroxidase knockdown affects ROS signaling and triggers early leaf senescence[J]. Plant Science, 2017(10):55-65.
    [16] Gossett D R, Millhollon E P, Lucas M. Antioxidant response to NaCl stress in salt-tolerant and salt-sensitive cultivars of cotton[J]. Crop Science, 1994, 34(3):706-714.
    [17] Knorzer O C, Burner J, Boger P. Alterations in the antioxidative system of suspension cultured soybean cells(Glycine max)induced by oxidative stress[J]. Physiologia Plantarum, 1996(2):388-396.
    [18] Meloni D A, Oliva M A, Martinez C A, et al. Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress[J]. Environmental and Experimental Botany, 2003, 49(1):69-76.
    [19]贾新平,邓衍明,孙晓波,等.盐胁迫对海滨雀稗生长和生理特性的影响[J].草业学报,2015,24(12):204-212.
    [20]袁俊杰,蒋玉蓉,吕柯兰,等.不同盐胁迫对藜麦种子发芽和幼苗生长的影响[J].种子,2015, 34(8):9-13.
    [21] Wang W B, Kim Y H, Lee H S, et al. Analysis of antioxidant enzyme activity during germination of alfalfa under salt and drought stresses[J]. Plant Physiology and Biochemistry,2009,47(7):570-577.
    [22] Matysik J, Alia,Bhalu B, et al. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants[J]. Current Science, 2002(5):525-532.
    [23]徐晨,凌风楼,徐克章,等.盐胁迫对不同水稻品种光合特性和生理生化特性的影响[J].中国水稻科学,2013, 27(3):280-286.
    [24]李永洁,李进,徐萍,等.黑果枸杞幼苗对干旱胁迫的生理响应[J].干旱区研究,2014, 31(4):756-762.
    [25]彭立新,周黎君,冯涛,等.盐胁迫对沙枣幼苗抗氧化酶活性和膜脂过氧化的影响[J].天津农学院学报,2009,16(4):1-4.
    [26]刘克彪,张元恺,李发明.黑果枸杞种子萌发对水分和钠盐胁迫的响应[J].经济林研究,2014, 32(4):45-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700