用户名: 密码: 验证码:
W-Al-B_4C复合材料的制备及性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Manufacture and Properties of W-Al-B_4C Composites
  • 作者:王利伟 ; 唐德文 ; 邹树梁
  • 英文作者:WANG Liwei;TANG Dewen;ZOU Shuliang;School of Mechanical Engineering, University of South China;
  • 关键词:真空烧结 ; 复合材料 ; 微观组织 ; 物相 ; 密度 ; 透射率
  • 英文关键词:vacuum sintering;;composite material;;microstructure;;phase;;density;;transmissivity
  • 中文刊名:HNYI
  • 英文刊名:Metal Materials and Metallurgy Engineering
  • 机构:南华大学机械工程学院;
  • 出版日期:2019-06-28
  • 出版单位:金属材料与冶金工程
  • 年:2019
  • 期:v.47;No.257
  • 语种:中文;
  • 页:HNYI201903003
  • 页数:6
  • CN:03
  • ISSN:43-1476/TF
  • 分类号:10-15
摘要
通过粉末冶金法和真空烧结的方式制备了不同钨含量的W-Al-B_4C复合材料,采用DM2700Leica金相显微镜和X射线衍射仪(XRD)对复合材料的微观组织及物相进行了观察分析,采用阿基米德排水法测量了W-Al-B4C复合材料的密度,采用MCNP程序对复合材料进行了γ射线屏蔽性能的模拟。结果表明:不同钨含量的复合材料中钨和碳化硼颗粒都较均匀的分布于铝基体中,彼此结合良好,材料致密,各相之间结合良好,没有出现较大的缺陷;不同钨含量的复合材料的衍射峰基本上相同,无偏移现象,没有发生合金化反应;随着钨含量的增加,复合材料的理论密度在逐渐增加,而实际测量密度随着钨含量的增加呈先增加后逐渐减小的趋势,当钨含量为10%时,测得复合材料的密度最大为1.798 3 g/cm~3;复合材料的透射率随着钨含量的增加呈指数衰减趋势,随着钨含量的增加,复合材料对γ射线的屏蔽性能在不断提高,当钨含量大于10%时,复合材料对γ射线几乎达到完全屏蔽的效果。
        W-Al-B_4C composites with different tungsten contents were prepared by powder metallurgy and vacuum sintering. The microstructure and phase of the composites were observed by DM2700 Leica metallographic microscope and X-ray diffraction(XRD). The density of the W-AlB_4C composite was measured by the Archimedes drainage method. The γ-ray shielding properties of the composites were simulated by MCNP program. The results show that the tungsten and boron carbide particles in the composite materials with different tungsten content are evenly distributed in the aluminum matrix, and the bonding is good, the materials are dense, the phases are well combined, and there are no large defects; With different tungsten content, the diffraction peaks of the composite materials are basically the same, there is no offset phenomenon, no alloying reaction occurs; as the tungsten content increases, the theoretical density of the composite material increases gradually, and the actual measured density increases at first with the increase of tungsten content, then it gradually decreases, when the tungsten content is 10%, the density of the composite material is measured to be at most 1.798 3 g/cm~3; The transmittance of composites decreases exponentially with the increase of tungsten content. With the increase of tungsten content,the shielding performance of composites to γ rays is continuously improved. When tungsten content is more than 10%, the shielding effect of composites to γ rays is almost complete.
引文
[1]张生玲,李强.低碳约束下中国核电发展及其规模分析[J].中国人口·资源与环境,2015,25(6):47-52.
    [2]ZHANG P,LI Y,WANG W,et al.The design fabrication and properties of B4C/Al neutron absorbers[J].Journal of Nuclear Materials,2013,437(1-3):350-358.
    [3]王群,耿云玲.日本福岛核事故分析与思考[J].国防科技,2012,33(6):11-19.
    [4]陈辛.钨-镍合金材料对γ射线屏蔽性能的研究[J]能源研究与管理,2008,4(2):25-28.
    [5]刘明朗,韩增尧,郎静,等.碳化硼-铝复合材料的研究进展[J].材料导报,2011,25(23):31-34.
    [6]KIPCAK A S,GURSES P,DRUM E M,et al Characterization of boron carbide particles and its shielding behavior against neutron radiation[J].Energy Conversion&Management,2013,72(72):39-44.
    [7]王傲松,刘翠波,孟氢钡.核电乏燃料贮存用中子吸收材料的发展及趋势[J].材料导报:纳米与新材料专辑,2016,30(2):233-236.
    [8]郑贤利,王俊霖,赵焱,等.镍合金对γ射线吸收系数的测量与分析[J].核电子学与探测技术,2013,33(1):62-64.
    [9]KAUR S,SINGH K J.Investigation of lead borate glasses doped with aluminium oxide as gamma ray shielding materials[J].Annals of Nuclear Energy,2014,63(1):350-354.
    [10]沈志强,康青,王正刚,等.掺氧化钨对水泥基材料γ射线屏蔽性能的影响[J].后勤工程学院学报,2017,33(4):48-51.
    [11]MAHMOUD M E,EI KHATIB A M,BADAWI M S,et al.Recycled high-density polyethylene plastics added with lead oxide nanoparticles as sustainable radiation shielding materials[J].Journal of Cleaner Production,2018,176:276-287.
    [12]元琳琳.核屏蔽用高硼金属复合材料的制备技术基础研究[D].北京:北京科技大学,2016.
    [13]YILMAZ E,BALTAS H,KLRLS E,et al.Gamma ray and neutron shielding properties of some concrete materials[J].Annals of Nuclear Energy,2011,38(10):2 204-2 212.
    [14]吕继新,陈建廷.高效能屏蔽材料铅硼聚乙烯[J].核动力工程,1994,15(4):370-374.
    [15]SINGH V P,BADIGER N M.Gamma ray and neutron shielding properties of some alloy materials[J].Annals of Nuclear Energy,2014,64(9):301-310.
    [16]TIE K,WANG H,WANG X,et al.Measurement of Bone Mineral Density in the Tunnel Regions for Anterior Cruciate Ligament Reconstruction by Dual-Energy X-Ray Absorptiometry,Computed Tomography Scan,and the Immersion Technique Based on Archimedes\"Principle[J].The Journal of Arthroscopic&Related Surgery,2012,28(10):1 464-1 471.
    [17]LU L,LEE Y K,ZHANG J J,et al.Development of Monte Carlo automatic modeling functions of MCAM for TRIPOLI-ITER application[J].Nuclear Instruments&Methods in Physics Research,2009,605(3):384-387.
    [18]刘自霞,陆春海,陈敏,等.不同材料对γ射线衰减系数的MCNP模拟[J].核电子学与探测技术,2013(11):1 376-1 380.
    [19]邹俭鹏,张兆森.真空烧结制备90W-Ni-Fe高密度钨合金的性能与显微结构[J].中国有色金属学报,2013,23(3):703-710.
    [20]ZHANG X,WANG Y,LU J,et al.Wettability and reactivity in diamond-borosilicate glass system[J]International Journal of Refractory Metals&Hard Materials,2010,28(2):260-264.
    [21]姜懿峰.核电救灾机器人中子屏蔽材料制备及辐射防护研究[D].上海:华东理工大学,2016.
    [22]李星洪.辐射防护基础[M].北京:原子能出版社,1982.
    [23]WALY E S A,BOURHAM M A.Comparative study of different concrete composition as gamma-ray shielding materials[J].Annals of Nuclear Energy,2015,85:306-310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700