用户名: 密码: 验证码:
冬小麦田臭氧干沉降观测及降水影响机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Ozone dry deposition in winter wheat field and the influence from rainfall
  • 作者:魏莉 ; 郑有飞 ; 赵辉
  • 英文作者:WEI Li;ZHENG You-fei;ZHAO Hui;School of Environmental Science and Engineering,Nanjing University of Information Science & Technology;Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control;School of Atmospheric Physics,Nanjing University of Information Science & Technology;
  • 关键词:臭氧通量 ; 沉降速率 ; 涡度相关 ; 冬小麦
  • 英文关键词:ozone flux;;deposition velocity;;eddy-covariance;;winter wheat
  • 中文刊名:STXZ
  • 英文刊名:Chinese Journal of Ecology
  • 机构:南京信息工程大学环境科学与工程学院;江苏省大气环境监测与污染控制高技术研究重点实验室;南京信息工程大学大气物理学院;
  • 出版日期:2019-05-23 14:17
  • 出版单位:生态学杂志
  • 年:2019
  • 期:v.38;No.312
  • 基金:国家自然科学基金面上项目(41475108);; 2017年度江苏省研究生科研创新项目(KYCX_0878)资助
  • 语种:中文;
  • 页:STXZ201907011
  • 页数:11
  • CN:07
  • ISSN:21-1148/Q
  • 分类号:84-94
摘要
利用涡度相关系统配合快速、慢速O_3浓度分析仪,对郑州冬小麦田的O_3干沉降过程进行连续观测,探讨了冬小麦田O_3干沉降特征,分析了降水对O_3干沉降的影响机制。结果表明:观测期间,O_3浓度日均值为42.7 nL·L~(-1),主要受太阳辐射和湿度影响,具有明显的逐日变化和昼夜变化特征; O_3通量的日均值为-0.0073μmol·m~(-2)·s~(-1)(负号表示方向向下),受O_3浓度影响较大,日变化规律呈单谷型; O_3沉降速率受大气湍流、植被的生育特征和气象条件等因素影响,日均值为0.38 cm·s~(-1),日变化为明显的单峰型;沉降速率的大小主要受大气动力过程控制,而冠层阻力在上午9:30达到了日最低值,是导致O_3沉降速率日最大值出现在上午的主要因素;降水主要通过增加非气孔沉降和降低大气湍流交换来影响冬小麦田的O_3沉降速率,因此在不同背景条件下,降水对O_3干沉降的影响结果也不尽相同。
        An eddy-covariance system combined with rapid and slow ozone concentration analyzer was used to measure ozone( O_3) dry deposition continuously in a winter wheat field in Zhengzhou. The aim of this study was to reveal the characteristics of O_3 dry deposition in winter wheat field,and to examine the influence of rainfall. The results showed that the daily average value of O_3 concentration was 42.7 n L·L~(-1) during the observation period. O_3 concentration was mainly affected by solar radiation and humidity,with obvious daily and diurnal variations. The diurnal variation of O_3 flux was single-valley type,with daily mean value of-0.0073 μmol·m~(-2)·s~(-1)( minus sign refers the direction towards the ground),which was greatly affected by the O_3 concentration. The O_3 deposition velocity was affected by atmospheric turbulence,vegetation growth characteristics,and meteorological conditions,with daily mean value of 0.38 cm·s~(-1). The diurnal variation was obvious single-peak type. The deposition velocity was mainly controlled by atmospheric dynamic process. The canopy resistance reached the daily minimum value at 9: 30 a. m.,which was the main factor leading to the maximum daily O_3 deposition velocity in the morning.Rainfall affected the O_3 deposition velocity of winter wheat field by increasing non-stomatal deposition and reducing atmospheric turbulence exchange. Therefore,the effects of rainfall on O_3 dry deposition were dependent on background conditions.
引文
陈琦,孙宏,陈晓东,等.2017.南京市臭氧短期暴露人群急性健康效应研究.江苏预防医学,28(4):366-368.
    李硕,郑有飞,吴荣军,等.2016.冬麦田臭氧干沉降过程的观测.应用生态学报,27(6):1811-1819.
    李硕.2014.冬小麦麦田臭氧干沉降机制的观测模拟研究(硕士学位论文).南京:南京信息工程大学.
    刘晶淼,丁裕国,黄永德,等.2003.太阳紫外辐射强度与气象要素的相关分析.高原气象,22(1):45-50.
    潘小乐,王自发,王喜全,等.2010.秋季在北京城郊草地下垫面上的一次臭氧干沉降观测试验.大气科学,34(1):120-130.
    谈建国,陆国良,耿福海,等.2007.上海夏季近地面臭氧浓度及其相关气象因子的分析和预报.热带气象学报,23(5):515-520.
    佟磊,王效科,肖航,等.2015.我国近地层臭氧污染对水稻和冬小麦产量的影响概述.生态毒理学报,10(3):161-169.
    王磊,刘端阳,韩桂荣,等.2018.南京地区近地面臭氧浓度与气象条件关系研究.环境科学学报,38(4):1285-1296.
    徐静馨,郑有飞,麦博儒,等.2017a.基于涡度相关法的麦田O3干沉降及不同沉降通道分配的特征.植物生态学报,41(6):670-682.
    徐静馨,郑有飞,赵辉,等.2017b.冬小麦田O3气孔与非气孔沉降及风险评估.环境科学,38(10):4427-4437.
    徐静馨,郑有飞,赵辉,等.2017.陆地生态系统臭氧干沉降的观测和模拟研究进展.生态毒理学报,12(6):57-68.
    袁月,郑有飞,赵辉,等.2016.臭氧与其他环境因子及其复合作用对植物的影响.作物杂志,32(1):16-22.
    郑有飞,刘宏举,吴荣军,等.2010.地表臭氧胁迫对冬小麦籽粒品质的影响研究.农业环境科学学报,29(4):619-624.
    朱治林,孙晓敏,董云社,等.2014a.鲁西北平原玉米地涡度相关臭氧通量日变化特征.中国科学:地球科学,44(2):292-301.
    朱治林,孙晓敏,于贵瑞,等.2014b.陆地生态系统臭氧通量观测和气孔吸收估算研究进展.生态学报,34(21):6029-6038.
    Altimir N,Kolari P,Tuovinen JP,et al.2006.Foliage surface ozone deposition:A role for surface moisture.Biogeosciences,3:209-228.
    Altimir N,Tuovinen JP,Vesala T,et al.2004.Measurements of ozone removal by Scots pine shoots:Calibration of a stomatal uptake model including the non-stomatal component.Atmospheric Environment,38:2387-2398.
    An JL,Shi YZ,Wang JX,et al.2016.Temporal variations of O3and NOxin the urban background atmosphere of Nanjing,East China.Archives of Environmental Contamination&Toxicology,71:224-234.
    Ashmore M,Toet S,Emberson L.2006.Ozone:A significant threat to future world food production.New Phytologist,170:201-204.
    Ashmore MR.2005.Assessing the future global impacts of ozone on vegetation.Plant,Cell and Environment,28:949-964.
    Avnery S,Mauzerall DL,Liu JF,et al.2011.Global crop yield reductions due to surface ozone exposure:1.Year 2000crop production losses and economic damage.Atmospheric Environment,45:2284-2296.
    Coyle M,Nemitz E,Storeton-West R,et al.2009.Measurements of ozone deposition to a potato canopy.Agricultural&Forest Meteorology,149:655-666.
    Fares S,Weber R,Park JH,et al.2012.Ozone deposition to an orange orchard:Partitioning between stomatal and nonstomatal sinks.Environmental Pollution,169:258-266.
    Fowler D,Pilegaard K,Sutton MA,et al.2009.Atmospheric composition change:Ecosystems-atmosphere interactions.Atmospheric Environment,43:5193-5267.
    Gerosa G,Marzuoli R,Cieslik S,et al.2004.Stomatal ozone fluxes over a barley field in Italy.“Effective exposure”as a possible link between exposure-and flux-based approaches.Atmospheric Environment,38:2421-2432.
    Grantz DA,Zhang XJ,Massman WJ,et al.1997.Ozone deposition to a cotton(Gossypium hirsutum L.)field:Stomatal and surface wetness effects during the California Ozone Deposition Experiment.Agricultural&Forest Meteorology,85:19-31.
    Hicks BB,Baldocchi DD,Meyers TP,et al.1987.A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities.Water,Air&Soil Pollution,36:311-330.
    Hogg A,Uddling J,Ellsworth D,et al.2007,Stomatal and non-stomatal fluxes of ozone to a northern mixed hardwood forest.Tellus Series B:Chemical and Physical Meteorology,59:514-525.
    Hole LR,Semb A,Trseth K.2004.Ozone deposition to a temperate coniferous forest in Norway;gradient method measurements and comparison with the EMEP deposition module.Atmospheric Environment,38:2217-2223.
    Huang HJ,Liu HN,Jiang WM,et al.2006.Physical and chemical characteristics and source apportionment of PM2.5in Nanjing.Climatic&Environmental Research,22:2687-2703.
    Lamaud E,Carrara A,Brunet Y,et al.2002.Ozone fluxes above and within a pine forest canopy in dry and wet conditions.Atmospheric Environment,36:77-88.
    Lamaud E,Loubet B,Irvine M,et al.2015.Partitioning of ozone deposition over a developed maize crop between stomatal and non-stomatal uptakes,using eddy-covariance flux measurements and modelling.Agricultural&Forest Meteorology,149:1385-1396.
    Liu JM,Ding YG,Huang YD,et al.2003.Correlation analysis of solar UV radiation intensity and meteorological elements.Plateau Meteorology,22:45-50.
    Massman WJ,Lee X.2002.Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges.Agricultural&Forest Meteorology,113:121-144.
    Massman WJ,Pederson J,Delany A,et al.1994.An evaluation of the regional acid deposition model surface module for ozone uptake at three sites in the San Joaquin Valley of California.Journal of Geophysical Research:Atmospheres,99:8281-8294.
    Matsuda K,Watanabe I,Wingpud V,et al.2005.Ozone dry deposition above a tropical forest in the dry season in northern Thailand.Atmospheric Environment,39:2571-2577.
    Matsuda K,Watanabe I,Wingpud V,et al.2006.Deposition velocity of O3and SO2in the dry and wet season above a tropical forest in northern Thailand.Atmospheric Environment,40:7557-7564.
    Pio CA,Feliciano MS,Vermeulen AT,et al.2000.Seasonal variability of ozone dry deposition under southern European climate conditions in Portugal.Atmospheric Environment,34:195-205.
    Pleijel H,Karlsson GP,Danielsson H,et al.1995.Surface wetness enhances ozone deposition to a pasture canopy.Atmospheric Environment,29:3391-3393.
    Rannik U,Altimir N,Mammarella I,et al.2012.Ozone deposition into a boreal forest over a decade of observations:Evaluating deposition partitioning and driving variables.Atmospheric Chemistry and Physics,12:12165-12182.
    Rummel U,Ammann C,Kirkman GA,et al.2007.Seasonal variation of ozone deposition to a tropical rain forest in southwest Amazonia.Atmospheric Chemistry&Physics,7:5415-5435.
    Stella P,Personne E,Loubet B,et al.2011.Predicting and partitioning ozone fluxes to maize crops from sowing to harvest:The Surfatm-O3model.Biogeosciences,8:2869-2886.
    Tarek EM,Katharina N,Otto K.2017.Stomatal and non-stomatal turbulent deposition flux of ozone to a managed peatland.Atmosphere,8:175-190.
    Vingarzan R.2004.A review of surface ozone background levels and trends.Atmospheric Environment,38:3431-3442.
    Wang XK,Manning W,Feng ZW,et al.2007.Ground-level ozone in China:Distribution and effects on crop yields.Environmental Pollution,147:394-400.
    Wesely ML,Hicks BB.2000.A review of the current status of knowledge on dry deposition.Atmospheric Environment,34:2261-2282.
    Zhang LM,Brook JR,Vet R.2002.On ozone dry depositionwith emphasis on non-stomatal uptake and wet canopies.Atmospheric Environment,36:4787-4799.
    Zheng JY,Zhong LJ,Wang T,et al.2010.Ground-level ozone in the Pearl River Delta region:Analysis of data from a recently established regional air quality monitoring network.Atmospheric Environment,44:814-823.
    Zhu ZL,Sun XM,Zhao FH,et al.2015.Ozone concentrations,flux and potential effect on yield during wheat growth in the Northwest Shandong Plain of China.Journal of Environmental Sciences,34:1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700