用户名: 密码: 验证码:
小蠹虫类异戊二烯类聚集信息素的生物合成
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Biosynthesis of isoprenoid aggregation pheromones in bark beetles (Coleoptera: Scolytidae)
  • 作者:方加兴 ; 张苏芳 ; 刘福 ; 张真 ; 孔祥波
  • 英文作者:FANG Jia-Xing;ZHANG Su-Fang;LIU Fu;ZHANG Zhen;KONG Xiang-Bo;Key Laboratory of Forest Protection of State Forestry Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry;
  • 关键词:小蠹虫 ; 齿小蠹属 ; 大小蠹属 ; 聚集信息素 ; 小蠹二烯醇 ; 马鞭草烯醇 ; 生物合成
  • 英文关键词:Bark beetles;;Ips;;Dendroctonus;;aggregation pheromones;;ipsdienol;;verbenol;;biosynthesis
  • 中文刊名:KCXB
  • 英文刊名:Acta Entomologica Sinica
  • 机构:中国林业科学研究院森林生态环境与保护研究所国家林业局森林保护学重点实验室;
  • 出版日期:2018-10-20
  • 出版单位:昆虫学报
  • 年:2018
  • 期:v.61
  • 基金:国家重点研发计划项目(2016YFC1201205,2017YFD0600103);; 中央级公益性科研院所基本科研业务费专项资金(CAFYBB2017ZB002);; 国家自然科学基金项目(31470654)
  • 语种:中文;
  • 页:KCXB201810012
  • 页数:15
  • CN:10
  • ISSN:11-1832/Q
  • 分类号:104-118
摘要
小蠹虫(小蠹科)是重要的森林蛀干害虫,在蛀食坑道时导致树木水分和养分运输系统受到破坏,短时间内对整片森林造成严重的经济危害。聚集信息素在小蠹虫聚集危害过程中扮演着非常重要的角色,目前已有多种小蠹虫聚集信息素成分被鉴定并成功应用于生产防控工作中。类异戊二烯类聚集信息素是小蠹虫中极为重要的一类聚集信息素,其主要成分包括小蠹烯醇、小蠹二烯醇、马鞭草烯醇及其衍生物。本文从类异戊二烯类聚集信息素的生物合成前体物质、生物合成位点、生物合成途径、取食和JHШ调控、微生物与其生物合成关系以及展望6个方面出发,全面阐述了齿小蠹属Ips和大小蠹属Dendroctonus中小蠹虫聚集信息素的生物合成机制及调控机制。文中首先重点阐述了小蠹虫体内以甲羟戊酸途径从头合成小蠹二烯醇以及利用寄主成分α-蒎烯直接合成马鞭草烯醇的生物合成过程;其次阐述了生物合成途径中关键酶和基因对小蠹取食和JHШ处理的响应以及小蠹虫肠道微生物和伴生真菌对该类聚集信息素生物合成的影响;最后,针对小蠹虫类异戊二烯类聚集信息素生物合成研究作了探讨和展望。本文为开发和应用其聚集信息素控制小蠹虫危害提供理论基础。
        The bark beetles(Scolytidae) are important wood boring pests, which can severely damage the water and nutrient transport systems of their hosts and cause significant economic loss to the damaged forest in a relatively short time. The aggregation pheromones of bark beetles play an important role in the process of their mass attack. Many aggregation pheromone components of bark beetles have been identified and applied successfully to manage and control bark beetle outbreak in the field. Among them, isoprenoid aggregation pheromones are the most important ones which include several kinds of components, such as ipsenol, ipsdienol, verbenol and their derivatives. In this article, in order to clarify the biosynthesis and regulation mechanism of isoprenoid aggregation pheromones of bark beetles in genera Ips and Dendroctonus, we focused on such six aspects as biosynthesis precursors, biosynthesis sites, biosynthesis pathway, feeding and JHШ regulation, relationships of microbes and biosynthesis, and the future research prospects. Firstly, we mainly introduced the de novo biosynthesis pathway of ipsdienol via mevalonate pathway and the transformation process of host volatile alpha-pinene to verbenol. Then, we summarized and elaborated the responses of key enzymes and genes in the biosynthesis pathway of juvenile hormone Ш and feeding treatments as well as the effects of gut microbes and associated fungi in bark beetles on aggregation pheromone biosynthesis. Finally, we put forward some research expectations concerning biosynthesis of isoprenoid aggregation pheromones in bark beetles. These information provide a theoretical basis for developing and applying aggregation pheromones to control bark beetles.
引文
Audrain B, Farag MA, Ryu CM, Ghigo JM, 2015. Role of bacterial volatile compounds in bacterial biology. FEMS Microbiol. Rev., 39(2): 222-233.
    Aw T, Schlauch K, Keeling CI, Young S, Bearfield JC, Blomquist GJ, Tittiger C, 2010. Functional genomics of mountain pine beetle (Dendroctonus ponderosae) midguts and fat bodies. BMC Genomics, 11(1): 215-227.
    Bach TJ, 1995. Some new aspects of isoprenoid biosynthesis in plants-a review. Lipids, 30(3): 191-202.
    Bakke A, 1976. Spruce bark beetle, Ips typographus: pheromone production and field response to synthetic pheromones. Naturwissenschaften, 63(2): 92.
    Bakke A, 1978. Aggregation pheromone components of the bark beetle Ips acuminatus. Oikos, 31(2): 184-188.
    Batra LR, 1963. Ecology of ambrosia fungi and their dissemination by beetle. Trans. Kans. Acad. Sci., 66(2): 213-236.
    Bearfield JC, Henry AG, Tittiger C, Blomquist GJ, Ginzel MD, 2009. Two regulatory mechanisms of monoterpenoid pheromone production in Ips spp. of bark beetles. J. Chem. Ecol., 35(6): 689-697.
    Bearfield JC, Keeling CI, Young S, Blomquist GJ, Tittiger C, 2006. Isolation, endocrine regulation and mRNA distribution of the 3-hydroxy-3-methylglutaryl coenzyme A synthase (HMGS) gene from the pine engraver, Ips pini (Coleoptera: Scolytidae). Insect Mol. Biol., 15(2): 187-195.
    Beer ZWD, Duong TA, Barnes I, Wingfield BD, Wingfield MJ, 2014. Redefining Ceratocystis and allied genera. Stud. Mycol., 79(78): 187-219.
    Bell SG, Chen X, Sowden RJ, Xu F, Williams JN, Wong LL, Rao Z, 2003. Molecular recognition in (+)-alpha-pinene oxidation by cytochrome P450cam. J. Am. Chen. Soc., 125(3): 705-714.
    Birgersson G, Bergstrm G, 1989. Volatiles released from individual spruce bark beetle entrance holes quantitative variations during the first week of attack. J. Chem. Ecol., 15(10): 2465-2483.
    Birgersson G, Schlyter F, Lfqvist J, Bergstrm G, 1984. Quantitative variation of pheromone components in the spruce bark beetle Ips typographus from different attack phases. J. Chem. Ecol., 10(7): 1029-1055.
    Bleiker KP, Six DL, 2007. Dietary benefits of fungal associates to an eruptive herbivore: potential implications of multiple associates on host population dynamics. Environ. Entomol., 36(6): 1384-1396.
    Blomquist GJ, Figueroateran R, Aw M, Song M, Gorzalski A, Abbott NL, Chang E, Tittiger C, 2010. Pheromone production in bark beetles. Insect Biochem. Molec. Biol., 40(10): 699-712.
    Brand JM, Bracke JW, Britton LN, Markovetz AJ, Barras SJ, 1976. Bark beetle pheromones: production of verbenone by a mycangial fungus of Dendroctonus frontalis. J. Chem. Ecol., 2(2): 195-199.
    Brand JM, Bracke JW, Markovetz AJ, Wood DL, Browne LE, 1975. Production of verbenol pheromone by a bacterium isolated from bark beetles. Nature, 254(5496): 136-137.
    Byers JA, 1981. Pheromone biosynthesis in the bark beetle, Ips paraconfusus, during feeding or exposure to vapours of host plant precursors. Insect Biochem., 11(5): 563-569.
    Byers JA, 1983a. Influence of sex, maturity and host substances on pheromones in the guts of the bark beetles, Ips paraconfusus and Dendroctonus brevicomis. J. Insect Physiol., 29(1): 5-13.
    Byers JA, 1983b. Bark beetle conversion of a plant compound to a sex-specific inhibitor of pheromone attraction. Science, 220(4597): 624-626.
    Byers JA, Birgersson G, 1990. Pheromone production in a bark beetle independent of myrcene precursor in host pine species. Naturwissenschaften, 77(8): 385-387.
    Byers JA, Birgersson G, 2012. Host-tree monoterpenes and biosynthesis of aggregation pheromones in the bark beetle Ips paraconfusus. Psyche, 2012(964): 1-10.
    Byers JA, Wood DL, 1981. Antibiotic-induced inhibition of pheromone synthesis in a bark beetle. Science, 213(4509): 763-764.
    Byers JA, Wood DL, Browne LE, Fish RH, Piatek B,Hendry LB, 1979. Relationship between a host plant compound, myrcene and pheromone production in the bark beetle, Ips paraconfusus. J. Insect Physiol., 25(6): 477-482.
    Byers JA, Wood DL, Craig J, Hendry LB, 1984. Attractive and inhibitory pheromones produced in the bark beetle, Dendroctonus brevicomis, during host colonization: regulation of inter- and intraspecific competition. J. Chem. Ecol., 10(6): 861-877.
    Cejanavarro JA, Vega FE, Karaoz U, Hao Z, Jenkins S, Lim HC, Kosina P, Infante F, Northen TR, Brodie EL, 2015. Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nat. Commun., 6(7618): 1-9.
    Chen DF, Li YJ, Zhang QH, Zhang SF, Wang HB, Zhang Z, Zhao LL, Kong XB, 2016. Population divergence of aggregation pheromone responses in Ips subelongatus in northeastern China. Insect Sci., 23(5): 728-738.
    Chen GF, Song YS, Wang PX, Chen JY, Zhang Z, Wang SM, Huang XB, Zhang QH, 2015. Semiochemistry of Dendroctonus armandi Tsai and Li (Coleoptera: Curculionidae: Scolytinae): both female-produced aggregation pheromone and host tree kairomone are critically important. Chemoecology, 25(3): 135-145.
    Chiu CC, Keeling CI, Bohlmann J, 2018. Monoterpenyl esters in juvenile mountain pine beetle and sex-specific release of the aggregation pheromone trans-verbenol. Proc. Natl. Acad. Sci. USA, 115(14): 3652-3657.
    Christiansen E, 1985. Ceratocystis polonica inoculated in Norway spruce: blue-staining in relation to inoculum density, resinosis and tree growth. Eur. J. For. Pathol., 15(3): 160-167.
    Conn JE, Borden JH, Hunt DWA, Holman J, Whitney HS, Spanier OJ, Pierce HDJr, Oehlschlager AC, 1984. Pheromone production by axenically reared Dendroctonus ponderosae and Ips paraconfusus (Coleoptera: Scolytidae). J. Chem. Ecol., 10(2): 281-290.
    Dai L, Li Z, Yu J, Ma M, Zhang R, Chen H, Pham T, 2015. The CYP51F1 gene of Leptographium qinlingensis: sequence characteristic, phylogeny and transcript levels. Int. J. Mol. Sci., 16(6): 12014-12034.
    Dai L, Wang C, Zhang X, Yu J, Zhang R, Chen H, 2014. Two CYP4 genes of the Chinese white pine beetle, Dendroctonus armandi (Curculionidae: Scolytinae), and their transcript levels under different development stages and treatments. Insect Mol. Biol., 23(5): 598-610.
    DiGuistini S, Wang Y, Liao NY, Taylor G, Tanguay P, Feau N, Henrissat B, Chan SK, Hesse-Orce U, Alamouti SM, Tsui CK, Docking RT, Levasseur A, Haridas S, Robertson G, Birol I, Holt RA, Marra MA, Hamelin RC, Hirst M, Jones SJ, Bohlmann J, Breuil C, 2011. Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen. Proc. Natl. Acad. Sci. USA, 108(6): 2504-2509.
    Dillon RJ, Vennard CT, Charnley AK, 2000. Exploitation of gut bacteria in the locust. Nature, 403(6722): 851.
    Dowd PF, 1992. Insect fungal symbionts: a promising source of detoxifying enzymes. J. Ind. Microbiol., 9(3-4): 149-161.
    Eidmann HH, Birgersson G, 1988. Semiochemicals in the East Himalaya spruce bark beetle. Anz. Schadlingskd. Pfl., 61(8): 147-148.
    Erbilgin N, Ma C, Whitehouse C, Shan B, Najar A, Evenden M, 2014. Chemical similarity between historical and novel host plants promotes range and host expansion of the mountain pine beetle in a naive host ecosystem. New Phytol., 201(3): 940-950.
    Francke W, Vité JP, 1983. Oxygenated terpenes in pheromone systems of bark beetles. Z. Angew. Entomol., 96(1-5): 146-156.
    Furniss M, SolhheimH, Christiansen E, 1990. Transmission of blue-stain fungi by Ips typographus (Coleoptera: Scolytidae) in Norway spruce. Ann. Entomol. Soc. Am., 83(4): 712-716.
    Gilg AB, Bearfield JC, Tittiger C, Welch WH, Blomquist GJ, 2005. Isolation and functional expression of an animal geranyl diphosphate synthase and its role in bark beetle pheromone biosynthesis. Proc. Natl. Acad. Sci. USA, 102(28): 9760-9765.
    Gore WE, Pearce GT, Lanier GN, Simeone JB, Silverstein RM, Peacock JW, Cuthbert RA, 1977. Aggregation attractant of the European elm bark beetle, Scolytus multistriatus. Production of individual components and related aggregation behavior. J. Chem. Ecol., 3(40): 429-446.
    Hall GM, Tittiger C, Andrews GL, Mastick GS, Kuenzli M, Luo X, Seybold SJ, Blomquist GJ, 2002. Midgut tissue of male pine engraver, Ips pini, synthesizes monoterpenoid pheromone component ipsdienol de novo. Naturwissenschaften, 89(2): 79-83.
    Hendry LB, Piatek B, Browne LE, Wood DL, Byers JA, Fish RH, Hicks RA, 1980. In vivo conversion of a labelled host plant chemical to pheromones of the bark beetle Ips paraconfusus. Nature, 284(5755): 485-485.
    Hoyt CP, Osborne GO, Mulcock AP, 1971. Production of an insect sex attractant by symbiotic bacteria. Nature, 230(5294): 472-473.
    Hughes PR, 1973. Dendroctonus: production of pheromones and related compounds in response to host monoterpenes. J. Appl. Entomol., 73(1-4): 294-312.
    Hughes PR, 1974. Myrcene: a precursor of pheromones in Ips beetles. J. Insect Physiol., 20(7): 1271-1275.
    Hughes PR, 1975. Pheromones of Dendroctonus: origin of alpha-pinene oxidation products present in emergent adults. J. Insect Physiol., 21(3): 687-691.
    Hunt DWA, Borden JH, 1990. Conversion of verbenols to verbenone by yeasts isolated from Dendroctonus ponderosae (Coleoptera: Scolytidae). J. Chem. Ecol., 16(4): 1385-1397.
    Hunt DWA, Borden JH, Lindgren BS, Gries G, 1989. The role of autoxidation of α-pinene in the production of pheromones of Dendroctonus ponderosae (Coleoptera: Scolytidae). Can. J. For. Res., 19(10): 1275-1282.
    Ivarsson P, Birgersson G, 1995. Regulation and biosynthesis of pheromone components in the double spined bark beetle Ips duplicatus (Coleoptera: Scolytidae). J. Insect Physiol., 41(10): 843-849.
    Ivarsson P, Schlyter F, Birgersson G, 1993. Demonstration of de novo pheromone biosynthesis in Ips duplicatus (Coleoptera: Scolytidae): inhibition of ipsdienol and E-myrcenol production by compactin. Insect Biochem. Molec. Biol., 23(6): 655-662.
    Ivarsson P, Tittiger C, Blomquist C, Borgeson CE, Seybold SJ, Blomquist GJ, Hgberg HE, 1998. Pheromone precursor synthesis is localized in the metathorax of Ips paraconfusus Lanier (Coleoptera: Scolytidae). Naturwissenschaften, 85(10): 507-511.
    Kandasamy D, Gershenzon J, Hammerbacher A, 2016. Volatile organic compounds emitted by fungal associates of conifer bark beetles and their potential in bark beetle control. J. Chem. Ecol., 42(9): 952-969.
    Keeling CI, Henderson H, Li M, Dullat HK, Ohnishi T, Bohlmann J, 2013. CYP345E2, an antenna-specific cytochrome P450 from the mountain pine beetle, Dendroctonus ponderosae Hopkins, catalyses the oxidation of pine host monoterpene volatiles. Insect Biochem. Molec. Biol., 43(12): 1142-1151.
    Keeling CI, Li M, Sandhu HK, Henderson H, Yuen MMS, Bohlmann J, 2016. Quantitative metabolome, proteome and transcriptome analysis of midgut and fat body tissues in the mountain pine beetle, Dendroctonus ponderosae Hopkins, and insights into pheromone biosynthesis. Insect Biochem. Molec. Biol., 70: 170-183.
    Kirisits T, Offenthaler I, 2002. Xylem sap flow of Norway spruce after inoculation with the blue-stain fungus Ceratocystis polonica. Plant Pathol., 51(3): 359-364.
    Kohnle U, Pajares JA, Bartels J, Meyer H, Francke W, 1993. Chemical communication in the European pine engraver, Ips mannsfeldi (Wachtl) (Col., Scolytidae). J. Appl. Entomol., 115(1-5): 1-7.
    Lanier GN, 1970. Biosystematics of North American Ips (Coleoptera: Scolytidae): Hopping’s group IX. Can. Entomol., 102(9): 1139-1163.
    Lanne BS, Ivarsson P, Johnsson P, Bergstrm G, Wassgren AB, 1989. Biosynthesis of 2-methyl-3-buten-2-ol, a pheromone component of Ips typographus (Coleoptera: Scolytidae). Insect Biochem., 19(2): 163-167.
    Leufvén A, Bergstrm G, Falsen E, 1984. Interconversion of verbenols and verbenone by identified yeasts isolated from the spruce bark beetle Ips typographus. J. Chem. Ecol., 10(9): 1349-1361.
    Lew AC, Ball HJ, 1978. The structure of apparent pheromone-secreting cells in female Diabrotica virgifera. Ann. Entomol. Soc. Am., 71(5): 685-688.
    Libbey LM, Ryker LC, Yandell KL, 1985. Laboratory and field studies of volatiles released by Dendroctonus ponderosae Hopkins (Coleoptera, Scolytidae). J. Appl. Entomol., 100(1-5): 381-392.
    Lieutier F, Yart A, Salle A, 2009. Stimulation of tree defenses by ophiostomatoid fungi can explain attack success of bark beetles on conifers. Ann. For. Sci., 66(8): 801.
    Lindstrm M, Norin T, Birgersson G, Schlyter F, 1989. Variation of enantiomeric composition of alpha-pinene in Norway spruce, Picea abies, and its influence on production of verbenol isomers by Ips typographus in the field. J. Chem. Ecol., 15(2): 541-547.
    Lopes AA, Baldoqui DC, López SN, Kato MJ, Bolzani VS, Furlan M, 2007. Biosynthetic origins of the isoprene units of gaudichaudianic acid in Piper gaudichaudianum (Piperaceae). Phytochemistry, 68(15): 2053-2058.
    Luo YM, Liu AH, Li Q, Huang LQ, 2003. Biosynthetic pathways and key enzymes of plant terpenoids. J. Jiangxi Univ. Trad. Chin. Med., 15(1): 45-51. [罗永明, 刘爱华, 李琴, 黄璐琦, 2003. 植物萜类化合物的生物合成途径及其关键酶的研究进展. 江西中医学院学报, 15(1): 45-51]
    Martin D, Bohlmann J, Gershenzon J, Francke W, Seybold SJ, 2003. A novel sex-specific and inducible monoterpene synthase activity associated with a pine bark beetle, the pine engraver, Ips pini. Naturwissenschaften, 90(4): 173-179.
    McGarvey DJ, Croteau R, 1995. Terpenoid metabolism. Plant Cell, 7(7): 1015-1026.
    Miller DR, Borden JH, King GGS, Slessor KN, 1991. Ipsenol: an aggregation pheromone for Ips latidens (Leconte) (Coleoptera: Scolytidae). J. Chem. Ecol., 17(8): 1517-1527.
    Miller DR, Gries G, Borden JH, 1990. E-Myrcenol: a new pheromone for the pine engraver, Ips pini (Say) (Coleoptera: Scolytidae). Can. Entomol., 122: 401-406.
    Morales-Jiménez J, Zúiga G, Ramírez-saad HC, Hernández-Rodríguez C, 2012. Gut-associated bacteria throughout the life cycle of the bark beetle Dendroctonus rhizophagus Thomas and Bright (Curculionidae: Scolytinae) and their cellulolytic activities. Microb. Ecol., 64(1): 268-278.
    Moreno B, Macías J, Sullivan BT, Clarke SR, 2008. Field response of Dendroctonus frontalis (Coleoptera: Scolytinae) to synthetic semiochemicals in Chiapas, Mexico. J. Ecol. Entomol., 101(6): 1821-1825.
    Morgun A, Dzutsev A, Dong X, Greer RL, Sexton DJ, Ravel J, Schuster M, Hsiao W, Matzinger P, Shulzhenko N, 2015. Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. Gut, 64(11): 1732-1743.
    Nadeau JA, Petereit J, Tillett RL, Jung K, Fotoohi M, MacLean M, Young S, Schlauch K, Blomquist GJ, Tittiger C, 2017. Comparative transcriptomics of mountain pine beetle pheromone-biosynthetic tissues and functional analysis of CYP6DE3. BMC Genomics, 18(1): 311-326.
    Nardi JB, Young AG, Ujhely E, Tittiger C, Lehane MJ, Blomquist GJ, 2002. Specialization of midgut cells for synthesis of male isoprenoid pheromone components in two scolytid beetles, Dendroctonus jeffreyi and Ips pini. Tissue Cell, 34(4): 221-231.
    Paine TD, Raffa KF, Harrington TC, 1997. Interactions among scolytid bark beetles, their associated fungi, and live host conifers. Annu. Rev. Entomol., 42(1): 179-206.
    Phillips MA, Croteau RB, 1999. Resin-based defenses in conifers. Trends Plant Sci., 4(5): 184-190.
    Renwick JAA, Hughes PR, Krull IS, 1976. Selective production of cis- and trans-verbenol from (-)- and (+)-α-pinene by a bark beetle. Science, 191(4223): 199-201.
    Renwick JAA, Hughes PR, Ty TD, 1973. Oxidation products of pinene in the bark beetle, Dendroctonus frontalis. J. Insect Physiol., 19(9): 1735-1740.
    Rohmer M, 1999. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat. Prod. Rep., 16(5): 565-574.
    Sandstrom P, Ginzel MD, Bearfield JC, Welch WH, Blomquist GJ, Tittiger C, 2008. Myrcene hydroxylases do not determine enantiomeric composition of pheromonal ipsdienol in Ips spp. J. Chem. Ecol., 34(12): 1584-1592.
    Sandstrom P, Welch WH, Blomquist GJ, Tittiger C, 2006. Functional expression of a bark beetle cytochrome P450 that hydroxylates myrcene to ipsdienol. Insect Biochem. Molec. Biol., 36(11): 835-845.
    Sapir-Mir M, Mett A, Belausov E, Tal-Meshulam S, Frydman A, Gidoni D, Eyal Y, 2008. Peroxisomal localization of Arabidopsis isopentenyl diphosphate isomerases suggests that part of the plant isoprenoid mevalonic acid pathway is compartmentalized to peroxisomes. Plant Physiol., 148(3): 1219-1228.
    Schlyter F, Birgersson G, Byers JA, Bakke A, 1992. The aggregation pheromone of Ips duplicatus and its role in competitive interactions with I. typographus. Chemoecology, 3(3): 103-112.
    Schulz S, Dickschat JS, 2007. Bacterial volatiles: the smell of small organisms. Nat. Prod. Rep., 24(4): 814-842.
    Scott JJ, Oh DC, Yuceer MC, Klepzig KD, Clardy J, Currie CR, 2008. Bacterial protection of beetle-fungus mutualism. Science, 322(5898): 63.
    Seybold SJ, Quilici DR, Tillman JA, Vanderwel D, Wood DL, Blomquist GJ, 1995. De novo biosynthesis of the aggregation pheromone components ipsenol and ipsdienol by the pine bark beetles Ips paraconfusus Lanier and Ips pini (Say) (Coleoptera: Scolytidae). Proc. Natl. Acad. Sci. USA, 92(18): 8393-8397.
    Shi ZH, Sun JH, 2010. Quantitative variation and biosynthesis of hindgut volatiles associated with the red turpentine beetle, Dendroctonus valens LeConte, at different attack phases. Bull. Entomol. Res., 100(3): 273-277.
    Silverstein RM, Rodin JO, Wood DL, 1966. Sex attractants in frass produced by male Ips confusus in ponderosa pine. Science, 154(3748): 509-510.
    Stoakley JT, Bakke A, Renwick JAA, Vité JP, 1978. The aggregation pheromone system of the larch bark beetle Ips cembrae Heer. J. Appl. Entomol., 86(1-4): 174-177.
    Symonds MRE, Elgar MA, 2004. The mode of pheromone evolution: evidence from bark beetles. Proc. R. Soc. Lond. B Biol. Sci., 271(1541): 839-846.
    Tashiro M, Kiyota H, Kawai-Noma S, Saito K, Ikeuchi M, Lijima Y, Umeno D, 2016. Bacterial production of pinene by a laboratory-evolved pinene-synthase. ACS Synth. Biol., 5(9): 1011-1020.
    Tilden PE, Bedard WD, 1985. Field response of Dendroctonus brevicomis to exo-brevicomin, frontalin, and myrcene released at two proportions and three levels. J. Chem. Ecol., 11(6): 757-766.
    Tillman JA, Holbrook GL, Dallara PL, Schal C, Wood DL, Blomquist GJ, Seybold SJ, 1998. Endocrine regulation of de novo aggregation pheromone biosynthesis in the pine engraver, Ips pini (Say) (Coleoptera: Scolytidae). Insect Biochem. Molec. Biol., 28(9): 705-715.
    Tillman JA, Lu F, Goodard LM, Donaldson Z, Dwinell SC, Tittiger C, Hall GM, Storer AJ, Blomquist GJ, Seybold SJ, 2004. Juvenile hormone regulates de novo isoprenoid aggregation pheromone biosynthesis in pine bark beetles, Ips spp. (Coleoptera: Scolytidae), through transcriptional control of HMG-CoA reductase. J. Chem. Ecol., 30(12): 2459-2494.
    Tillman JA, Seybold SJ, Jurenka RA, Blomquist GJ, 1999. Insect pheromones-an overview of biosynthesis and endocrine regulation. Insect Biochem. Molec. Biol., 29(6): 481-514.
    Tittiger C, Blomquist GJ, 2017. Pheromone biosynthesis in bark beetles. Curr. Opin. Insect Sci., 24: 68-74.
    Towler MJ, Weathers PJ, 2007. Evidence of artemisinin production from IPP stemming from both the mevalonate and the nonmevalonate pathways. Plant Cell Rep., 26(12): 2129-2136.
    Vanderwel D, Gries G, Singh SM, Borden JH, Oehlschlager AC, 1992. (E)- and (Z)-6-nonen-2-one: biosynthetic precursors of endo- and exo-brevicomin in two bark beetles (Coleoptera: Scolytidae). J. Chem. Ecol., 18(8): 1389-1404.
    Vité J, Bakke A, Renwick JAA, 1972. Pheromones in Ips (Coleoptera: Scolytidae): occurrence and production. Can. Entomol., 104(12): 1967-1975.
    Wadakatsumata A, Zurek L, Nalyanya G, Roelofs WL, Zhang AJ, Schal C, 2015. Gut bacteria mediate aggregation in the German cockroach. Proc. Natl. Acad. Sci. USA, 112(51): 15678-15683.
    Wadke N, Kandasamy D, Vogel H, Lah L, Wingfield BD, Paetz C, Wright LP, Gershenzon J, Hammerbacher A, 2016. The bark-beetle-associated fungus, Endoconidiophora polonica, utilizes the phenolic defense compounds of its host as a carbon source. Plant Physiol., 171(2): 914-931.
    Wang B, Salcedo C, Lu M, Sun JH, 2011. Mutual interactions between an invasive bark beetle and its associated fungi. Bull. Entomol. Res., 102(1): 71-77.
    Wang QJ, Zhang B, Wang JW, 2012. Recent research on isoprenoid biosynthetic pathway and metabolic regulation of functional isoprenoids in medicinal plant. Bot. Res., 1(2): 23-29. [王秋军, 张犇, 王剑文, 2012. 药用植物类异戊二烯代谢途径及其活性产物合成调控研究进展. 植物学研究, 1(2): 23-29]
    Wei G, Lai YL, Wang GD, Chen H, Li F, Wang SB, 2017. Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proc. Natl. Acad. Sci. USA, 114(23): 5994-5999.
    White RAJr, Franklin RT, Agosin M, 1979. Conversion of α-pinene to α-pinene oxide by rat liver and the bark beetle Dendroctonus terebrans microsomal fractions. Pestic. Biochem. Physiol., 10(3): 233-242.
    Xu LT, Lou QZ, Cheng CH, Lu M, Sun JH, 2015. Gut-associated bacteria of Dendroctonus valens and their involvement in verbenone production. Microb. Ecol., 70(4): 1012-1023.
    Xu LT, Shi ZH, Wang B, Lu M, Sun JH, 2016. Pine defensive monoterpene α-pinene influences the feeding behavior of Dendroctonus valens and its gut bacterial community structure. Int. J. Mol. Sci., 17(11): 1734-1746.
    Zhang QH, Ma JH, Zhao FY, Song LW, Sun JH, 2009a. Aggregation pheromone of the Qinghai spruce bark beetle, Ips nitidus eggers. J. Chem. Ecol., 35(5): 610-617.
    Zhang QH, Schlyter F, Chen G, Wang Y, 2007. Electrophysiological and behavioral responses of Ips subelongatus to semiochemicals from its hosts, non-hosts, and conspecifics in China. J. Chem. Ecol., 33(2): 391-404.
    Zhang QH, Song LW, Ma JH, Han FZ, Sun JH, 2009b. Aggregation pheromone of a newly described spruce bark beetle, Ips shangrila Cognato and Sun from China. Chemoecology, 19(4): 203-210.
    Zhao T, Axelsson K, Krokene P, Borg-Karlson AK, 2015. Fungal symbionts of the spruce bark beetle synthesize the beetle aggregation pheromone 2-methyl-3-buten-2-ol. J. Chem. Ecol., 41(9): 848-852.
    Zhou FY, Xu LT, Wang SS, Wang B, Lou QZ, Lu M, Sun JH, 2017. Bacterial volatile ammonia regulates the consumption sequence of D-pinitol and D-glucose in a fungus associated with an invasive bark beetle. ISME J., 11(12): 2809-2820.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700