用户名: 密码: 验证码:
沙层特性对沙盖黄土坡面产流产沙变化贡献的定量分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quantifying the contributions of sand layer characteristic to variations of runoff and sediment yields from sand-covered loess slopes during simulated rainfall
  • 作者:曹晓娟 ; 谢林妤 ; 张风宝 ; 杨明义 ; 李占斌
  • 英文作者:CAO Xiaojuan;XIE Linyu;ZHANG Fengbao;YANG Mingyi;LI Zhanbin;State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau,Institute of Soil and Water Conservation,CAS and Ministry of Water Resources;University of Chinese Academy of Sciences;Xi'an Workstation of Soil and Water Conservation;Institute of Soil and Water Conservation,Northwest A&F University;Institute of Water Resources and Hydro-electric Engineering,Xi'an University of Technology;
  • 关键词:覆沙厚度 ; 粒径组成 ; 径流 ; 泥沙 ; 贡献率
  • 英文关键词:sand layer thickness;;particle size composition;;runoff;;sediment;;contribution rate
  • 中文刊名:DLXB
  • 英文刊名:Acta Geographica Sinica
  • 机构:中国科学院水利部水土保持研究所黄土高原土壤侵蚀与旱地农业国家重点实验室;中国科学院大学;西安市水务局水利水土保持工作总站;西北农林科技大学水土保持研究所;西安理工大学水利水电学院;
  • 出版日期:2019-05-20 10:59
  • 出版单位:地理学报
  • 年:2019
  • 期:v.74
  • 基金:国家重点研发计划(2016YFC0402406);; 国家自然科学基金项目(41371283,41877080)~~
  • 语种:中文;
  • 页:DLXB201905011
  • 页数:13
  • CN:05
  • ISSN:11-1856/P
  • 分类号:128-140
摘要
沙盖黄土坡面产流产沙方式独特,侵蚀过程复杂,量化降雨过程中该类坡面产流产沙变化影响因素贡献的大小对揭示其侵蚀机理具有重要的意义。基于室内模拟降雨试验,定量分析沙层厚度(2 cm、5 cm和10 cm)和粒径组成(100%粒径≤0.25 mm、75%粒径≤0.25 mm+25%粒径> 0.25 mm、50%粒径≤0.25 mm+50%粒径> 0.25 mm、未处理原沙和100%粒径> 0.25 mm)在降雨过程中对产流产沙变化的影响和贡献。结果显示:沙层厚度增加能明显延长产流时间,减少总产流量,增加总产沙量,增大降雨过程中产流产沙的变异性;随沙层粒径组成变粗,初始产流时间和产沙量无明显变化规律,产流量有增大趋势。沙层厚度、粒径组成及二者交互作用对初始产流时间变化的贡献率分别为68.03%、15.77%和3.85%。沙层厚度对降雨不同时段15min产流量和不同历时总产流量的贡献率分别在23.89%~52.22%和41.10%~48.94%之间,对相应产沙的贡献率分别在29.19%~62.01%和13.53%~30.31%之间。整体上沙层粒径组成变化对产流产沙量变化的贡献率小于沙层厚度,且无明显规律。沙层厚度和粒径组成交互作用对产流量和降雨中前期产沙量的影响显著(p <0.05),其对产流产沙变化的贡献率分别在13.12%~26.62%和3.22%~43.12%之间,不同降雨时段变化明显。研究结果说明,沙层厚度决定沙盖黄土坡面产流产沙过程,其和沙层粒径组成对产流产沙的影响和贡献随坡面沙层的侵蚀演化而动态变化,且二者的交互作用也不容忽视。
        Loess slopes covered with aeolian sand are unique geomorphic features in the windwater erosion crisscross region on the Chinese Loess Plateau. On these loess slopes, runoff and sediment production patterns are unique and complex and the thickness of covering sand and its interaction with other factors may largely interfere soil erosional responses. Therefore,quantifying the variations of runoff and sediment yields and assessing the possible factors are of great importance to understand the erosion mechanism in such unique landscapes. To quantify the effects of sand layer thickness and sand size composition on runoff generation and sediment yield, sand-covered loess slopes with 15° were subject to simulated rainfall events(intensity 1.5 mm/min) in this study. Sand layers of three different thicknesses, 2 cm, 5 cm and10 cm, were respectively placed on loess surface. For each sand thickness, there were five kinds of compositions, i.e. 100% sand diameter ≤ 0.25 mm, 75% sand diameter ≤ 0.25 mm +25% sand diameter > 0.25 mm, 50% sand diameter ≤ 0.25 mm + 50% sand diameter > 0.25 mm, untreated sand, and 100% sand diameter > 0.25 mm. Our results show that as sand thickness increased, it prolonged initiation time of runoff, reduced runoff yield, increased sediment yield and enhanced the variability in runoff and soil loss rates during rainfall. Our findings also indicate that with coarser sand, the total runoff loss tended to increase even though the initiation time of runoff and sediment yield was not obviously changed. The sand layer thickness, sand size composition, and their interactions respectively contributed 68.03%,15.77%, and 3.85% to the variation of initiation time of runoff(p < 0.05), respectively. For the runoff production, the sand layer thickness can explain 23.89% to 52.22% of the variation of runoff rates during a 15-min rainfall sub-rainfall, and 41.10% to 48.94% of total runoff loss for different rainfall durations. For the sediment production, the sand layer thickness can explain29.19% to 62.01% of the variation of soil loss rates during a 15-min rainfall sub-rainfall, and13.53% to 30.31% the total sediment yield for different rainfall durations. Moreover, the sand size composition had less impact on runoff and sediment yields than the thickness of the sand layers. Their combined effects were significant during the early and intermediate stages(p <0.05), and contributed to 13.12%-26.62% of runoff loss and 3.22%-43.12% of sediment yield.Overall our observations suggest that runoff and sediment generation on sand-covered loess slopes were mainly affected by the sand layer thickness rather than sand size composition, and their combined effects also varied as erosion proceeded.
引文
[1] Song Yang, Liu Lianyou, Yan Ping. A review on complex erosion by wind and water research. Acta Geographica Sinica,2006, 61(1):77-88.[宋阳,刘连友,严平.风水复合侵蚀研究述评.地理学报, 2006, 61(1):77-88.]
    [2] Gao Xuetian, Tang Keli. Study on alternate action of wind erosion and water erosion in Shenfu-Dongsheng coal mining area. Journal of Soil Erosion and Soil and Water Conservation, 1997, 3(4):2-8.[高学田,唐克丽.神府—东胜矿区风蚀水蚀交互作用研究.土壤侵蚀与水土保持学报, 1997, 3(4):2-8.]
    [3] Zhang Pingcang. Spatial and temporal variability of erosion by water and wind in water-wind erosion crisscross region:Taking Liudaogou Watershed in Jin-Shaan-Meng contiguous areas as an example. Journal of Soil Erosion and Soil and Water Conservation, 1999, 5(3):93-94.[张平仓.水蚀风蚀交错带水风两相侵蚀时空特征研究:以神木六道沟小流域为例.土壤侵蚀与水土保持学报, 1999, 5(3):93-94.]
    [4] Zhang Liping, Tang Keli, Zhang Pingcang. Research on soil wind erosion laws in Loess Hilly-Gully Region covered by sheet sand. Journal of Soil Erosion and Soil and Water Conservation, 1997, 3(3):8-12.[张丽萍,唐克丽,张平仓.片沙覆盖的黄土丘陵区土壤风蚀特征研究.土壤侵蚀与水土保持学报, 1997, 3(4):8-12.]
    [5] Xu J X. The wind-water two-phase erosion and sediment-producing processes in the middle Yellow River basin, China.Science in China Series D-Earth Sciences, 2000, 43:176-186.
    [6] Xu J X. Influences of coupled wind-water processes on suspended sediment grain size:An example from tributaries of the Yellow River. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 2005, 50:881-895.
    [7] Xu J X, Yang J S, Yan Y X. Erosion and sediment yields as influenced by coupled eolian and fluvial processes:The Yellow River, China. Geomorphology, 2006, 73(1/2):1-15.
    [8] Wu Shengyong. The analysis of variation of weather of Shenmu county in the past 55 years. Climate Shaanxi, 2013(2):20-23.[吴胜勇.神木县近55年气候特征及变化分析.陕西气象, 2013(2):20-23.]
    [9] Zhang J Q, Yang M Y, Deng X X, et al. Beryllium-7 measurements of wind erosion on sloping fields in the wind-water erosion crisscross region on the Chinese Loess Plateau. Science of the Total Environment, 2018, 615:240-252.
    [10] Hai Chunxin, Shi Peijun, Liu Baoyuan, et al. Research status of wind and water double erosion and its main study content in future. Journal of Soil and Water Conservation, 2002, 16(2):50-52, 56.[海春兴,史培军,刘宝元,等.风水两相侵蚀研究现状及我国今后风水蚀的主要研究内容.水土保持学报, 2002, 16(2):50-52, 56.]
    [11] Tuo Dengfeng, Xu Mingxiang, Zheng Shiqing, et al. Sediment-yielding process and its mechanisms of slope erosion in wind-water erosion crisscross region of Loess Plateau, northwest China. Chinese Journal of Applied Ecology, 2012, 23(12):3281-3287.[脱登峰,许明祥,郑世清,等.黄土高原风蚀水蚀交错区侵蚀产沙过程及机理.应用生态学报,2012, 23(12):3281-3287.]
    [12] Yao Zhengyi., Qu Jianjun, Zheng Xinming, et al. Present status, characteristic of distribution and development tendency of soil and water loss of wind-water erosion of agriculture-animal husbandry intercrossed area in north. Soil and Water Conservation in China, 2008(12):63-66.[姚正毅,屈建军,郑新民,等.北方农牧交错带风水蚀复合区水土流失现状、分布特点及发展趋势,中国水土保持, 2008(12):63-66.]
    [13] Tang Keli. Importance and urgency of harnessing the interlocked area with both water and wind erosion in the Loess Plateau. Soil and Water Conservation in China, 2000(11):11-12.[唐克丽.黄土高原水蚀风蚀交错区治理的重要性与紧迫性,中国水土保持, 2000(11):11-12.]
    [14] Tang Keli, Hou Qingchun, Wang Binke, et al. The environment background and administration way of Wind-water Erosion Crisscross Region and Shenmu Experimental Area. Mrmoir of NISWC, Academia Sinica and Ministry of Water Resources, 1993(2):14.[唐克丽,侯庆春,王斌科,等.黄土高原水蚀风蚀交错带和神木试区的环境背景及整治方向.中国科学院水利部西北水土保持研究所集刊(神木水蚀风蚀交错带生态环境整治技术及试验示范研究论文集), 1993(2):14.]
    [15] Zhang Q Y, Fan J, Zhang X P. Effects of simulated wind followed by rain on runoff and sediment yield from a sandy loessial soil with rills. Journal of Soils and Sediments, 2016, 16(9):2306-2315.
    [16] Liu J H, Wang G Q, Li H H, et al. Water and sediment evolution in areas with high and coarse sediment yield of the Loess Plateau. International Journal of Sediment Research, 2013, 28(4):448-457.
    [17] Zhang Shengli, Chen Fazhong. Influence of sand yield by wind erosion on coarse sediment in the muddy and coarse sand area of middle Yellow River. Soil and Water Conservation in China, 1997(9):17-22, 65-66.[张胜利,陈发中.黄河中游多沙粗沙区风蚀产沙对黄河粗泥沙影响分析.中国水土保持, 1997(9):17-22, 65-66.]
    [18] Stokes S, Goudie A S, Colls A E L, et al. On the timing of dune construction in the northernmost RubAl-Khali, United Arab Emirates//Dubai International Conference on Desertification, February 2000, Dubai, Abstracts Volume, 2002:34.
    [19] Stokes S, Goudie A S, Colls A E L, et al. Optical dating as a tool for studying dune reactivation, accretion rates and desertification over decadal, centennial and millennial timescales//Alsharhan A S, Wood W W, Goudie A S, et al.Desertification in the Third Millenium. Balkema, Rotterdam, 2003:57-66.
    [20] Wu Xiurong, Zhang Fengbao, Wang Zhanli. Variation of sand and loess properties of binary structure profile in hilly region covered by sand of the Loess Plateau. Journal of Soil and Water Conservation, 2014, 28(6):190-193, 210.[武秀荣,张风宝,王占礼.片沙覆盖黄土坡面沙土二元结构剖面土壤物理性质变化研究.水土保持学报, 2014, 28(6):190-193, 210.]
    [21] Zhang Liping, Tang Keli, Zhang Pingcang. Soil water erosion processes in loess hilly-gully region covered with sheet sand. Journal of Soil Erosion and Soil and Water Conservation, 1999, 5(1):41-46.[张丽萍,唐克丽,张平仓.片沙覆盖的黄土丘陵区土壤水蚀过程研究.土壤侵蚀与水土保持学报, 1999, 5(1):41-46.]
    [22] Zhang F B, Bai Y J, Xie L Y, et al. Runoff and soil loss characteristics on loess slopes covered with aeolian sand layers of different thicknesses under simulated rainfall. Journal of Hydrology, 2017, 549:244-251.
    [23] Zhang F B, Yang M Y, Li B B, et al. Effects of slope gradient on hydro-erosional processes on an aeolian sand-covered loess slope under simulated rainfall. Journal of Hydrology, 2017, 553:447-456.
    [24] Xie Linyu, Bai Yujie, Zhang Fengbao, et al. Effect of thickness and particle size composition of overlying sand layer on runoff and sediment yield on sand-covered loess slopes. Acta Pedologica Sinica, 2017, 54(1):60-72.[谢林妤,白玉洁,张风宝,等.沙层厚度和粒径组成对覆沙黄土坡面产流产沙的影响.土壤学报, 2017, 54(1):60-72.]
    [25] Xu G C, Tang S S, Lu K X, et al. Runoff and sediment yield under simulated rainfall on sand-covered slopes in a region subject to wind-water erosion. Environmental Earth Sciences, 2015, 74(3):2523-2530.
    [26] Tang Shanshan, Li Zhanbin, Li Cong, et al. Runoff and sediment yield process on sand covered slope under simulated rainfall. Journal of Northwest A&F University(Nat. Sci. Ed.), 2016, 44(5):139-146.[汤珊珊,李占斌,李聪,等.模拟降雨条件下覆沙坡面产流产沙过程研究.西北农林科技大学学报(自然科学版), 2016, 44(5):139-146.]
    [27] Tang Shanshan, Li Zhanbin, Lu Kexin, et al. Relationship between hydrodynamic parameters and runoff and sediment yield on sand-covered slope in rainfall simulation study. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(20):136-143.[汤珊珊,李占斌,鲁克新,等.覆沙坡面水动力学参数与径流产沙的关系.农业工程学报, 2017, 33(20):136-143.]
    [28] Tang Shanshan, Li Peng, Ren Zongping, et al. Particle size composition of sediment from sand-covered slope under simulated rainfall. Acta Pedologica Sinica, 2016, 53(1):39-47.[汤珊珊,李鹏,任宗萍,等.模拟降雨下覆沙坡面侵蚀颗粒特征研究.土壤学报, 2016, 53(1):39-47.]
    [29] Zhang X, Li Z B, Li P, et al. Influences of sand cover on erosion processes of loess slopes based on rainfall simulation experiments. Journal of Arid Land, 2018, 10:39-52.
    [30] Zheng Fenli, Zhao Jun. Introduction of the artificial rainfall simulation and rain markers. Research of Soil and Water Conservation, 2004, 11(4):177-178.[郑粉莉,赵军.人工模拟降雨大厅及模拟降雨设备简介.水土保持研究, 2004,11(4):177-178.]
    [31] Aber S, Salari D, Parsa M R. Employing the Taguchi method to obtain the optimum conditions of coagulationflocculation process in Tannery wastewater treatment. Chemical Engineering Journal, 2010, 162(1):127-134.
    [32] Zhang Hui, Li Peng, Tang Shanshan, et al. Experimental study on runoff and sediment yield characteristics on sandcovered slope under the condition of repetitive rainfall. Journal of Sediment Research, 2016(6):59-65.[张辉,李鹏,汤珊珊,等.多场次降雨条件下覆沙坡面的径流产沙特性试验研究.泥沙研究, 2016(6):59-65.]
    [33] Zhang Yang, Li Zhanbin, Niu Wen, et al. Runoff and sediment yield process on the sand-covered loess slopes under simulated runoff conditions. Journal of Soil and Water Conservation, 2017, 31(4):6-10, 31.[张洋,李占斌,牛雯,等.模拟径流条件下覆沙黄土坡面产流产沙过程.水土保持学报, 2017, 31(4):6-10, 31.]
    [34] Tang Shanshan, Li Zhanbin, Ren Zongping, et al. Experimental study on the process of runoff and sediment yield on sand-covered slope. Journal of Soil and Water Conservation, 2015, 29(5):25-28.[汤珊珊,李占斌,任宗萍,等.覆沙坡面产流产沙过程试验研究.水土保持学报, 2015, 29(5):25-28.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700