用户名: 密码: 验证码:
大容量气枪震源广角地震数据的高频成分分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of the high frequency components among wide-angle reflection/refraction data excited by large volume air-gun sources
  • 作者:王笋 ; 丘学林 ; 郭晓然 ; 赵明辉 ; 李普春
  • 英文作者:WANG Sun;QIU Xue-lin;GUO Xiao-ran;ZHAO Ming-hui;LI Pu-chun;Xiamen Centre for Seismic Survey,Earthquake Administration of Fujian Province;CAS Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology;University of Chinese Academy of Sciences;
  • 关键词:大容量气枪震源 ; 广角地震资料 ; 有效频带 ; 分频扫描 ; 反射系数频散
  • 英文关键词:Large volume air-gun sources;;Wide-angle seismic data;;Seismic bandwidth;;Frequency scanning;;Reflectivity dispersion
  • 中文刊名:DQWJ
  • 英文刊名:Progress in Geophysics
  • 机构:福建省地震局厦门地震勘测研究中心;中国科学院边缘海与大洋地质重点实验室(南海海洋研究所);中国科学院大学;
  • 出版日期:2018-01-24 16:53
  • 出版单位:地球物理学进展
  • 年:2019
  • 期:v.34;No.153
  • 基金:福建省地震局青年科技基金(Y201502);; 国家自然科学基金(91428204,41730532)联合资助
  • 语种:中文;
  • 页:DQWJ201901051
  • 页数:8
  • CN:01
  • ISSN:11-2982/P
  • 分类号:385-392
摘要
大容量气枪震源由于能量集中在低频段、子波一致性好、绿色环保等优点,广泛应用于广角地震探测中,极大地推进了人们对地壳结构和地球动力学过程的认识.气枪信号的有效频带是地震数据质量评价和精细处理一个重要基础参数,以往研究由于数据源和研究方法的局限,认为最高有效频率在10 Hz以下.本文基于福建省地震局采集的大容量气枪源广角地震数据,根据地震道褶积模型分析了有效频带及其影响因素,对不同类型、不同台基条件的地震接收仪器记录的大容量气枪信号数据进行了分频扫描,结果显示台基条件较好的台站数据,在10~20 Hz频段仍有较高的信噪比,说明大容量气枪激发的地震波在经过深部地层衰减后,仍存在相当可观的高于10 Hz的成分.这些高频成分可以显著提升地震信号的倍频程,减少频带过窄带来的旁瓣效应等不利影响,是准确提取走时的必要条件.值得注意的是大容量气枪源数据中PmP震相的主频可达10~12 Hz,显著高于震源子波的主频,据此推断Moho面的广角反射系数有显著的蓝谱特征,因此10 Hz以上成分对准确提取走时、获取更为精细的地壳结构非常重要.本研究对大容量气枪源广角地震探测的野外采集和数据处理提供了关键质量指标,同时提出从构造反演向岩性反演推进是广角地震探测一个重要的研究方向.
        Large volume air-gun sources are widely used in wide-angle seismic exploration and have greatly promoted the understanding of crustal structure and geodynamic processes because they have many advantages such as dominantly low-frequency components, wavelet consistency, and environmental friendliness. The effective frequency-band is a very important parameter for the quality evaluation and fine processing of seismic data. Most of the previous research suggested that the highest reliable frequency was below 10 Hz due to the limit by data sources and processing methods. This paper studies effective frequency-band and effective parameters deduced by the convolution model of seismic traces on the basis of wide-angle seismic data excited by large volume air-gun sources. The data were tested using frequency scanning for different types of instruments and stations seismic basement, the results show that some stations' data have still dominantly 10~20 Hz band with high signal-to-noise ratio. It indicates that the high frequency components(higher than 10 Hz) can be recorded and identified in the deep seismic data excited by large volume air-gun sources even their undergone deep strata attenuation. Those high frequency components can significantly improve the octave of seismic signals and reduce the side-lobe levels, is the key for the accurate extraction of travel time. More significantly, the dominant frequency of PmP phases produced by large volume air-gun sources is usually 10~12 Hz, which is obviously higher than the dominant frequency of source wavelet. So we deduce that the wide-angle reflection coefficients from Moho interface are of blue spectrum characteristic. So effective bandwidth and signal-to-noise ratio of high band should be used as the key indicators of the quantitative evaluation of deep seismic data produced by large volume air-gun sources. This study provides a critical quality criterion for seismic survey and data processing. Meanwhile, it proposes an important developing direction for wide angle seismic exploration from inversion of crustal structure to the interpretation of crustal lithology.
引文
Batzle M,Han Dehua,Hofmann R. 2003. Macro-flow and velocity dispersion[C]. SEG technical program expanded abstracts. Dallas: Society of Exploration Geophysicists,1691-1694.
    Batzle M,Hofmann R,Prasad M,et al. 2005. Seismic attenuation: Observations and mechanisms[C]. SEG technical program expanded abstracts. Denver: Society of Exploration Geophysicists,2005: 1565-1568.
    Bourbié T. 1982. Effects of attenuation on reflections [Master’s thesis][D]. Stanford,CA: Stanford University.
    Cai X L,Liu X W,Lv Y M,et al. 2008. Statistical estimation of F-X spectrum and its application[J]. Progress in Exploration Geophysics (in Chinese),31(3): 181-187.蔡希玲,刘学伟,吕英梅,等. 2008. 统计F-X谱估计方法及应用[J]. 勘探地球物理进展,31 (3): 181-186.
    Cao J H,Sun J L,Xu H L,et al. 2014. Seismological features of the littoral fault zone in the Pearl River Estuary[J]. Chinese J. Geophys (in Chinese),57(2): 498-508.曹敬贺,孙金龙,徐辉龙等. 2014. 珠江口海域滨海断裂带的地震学特征[J]. 地球物理学报,57(2): 498-508,doi: 10.6038/cjg20140215.
    Chen Y,Wang B S,Ge H K,et al. 2007a. Proposed of Transmitted Seismic Stations[J]. Advances in Earth Science (in Chinese),22(5): 441- 446.陈颙,王宝善,葛洪魁,等. 2007a. 建立地震发射台的建议[J]. 地球科学进展,22(5): 441- 446,doi: 10.3321/j.issn:1001-8166.2007.05.001.
    Chen Y,Zhang X K,Qiu X L,et al. 2007b. A new way to generate seismic waves for continental crustal exploration[J]. Chinese Science Bulletin (in Chinese),52(16): 2264-2268.陈颙,张先康,丘学林,等. 2007b. 陆地人工激发地震波的一种新方法[J]. 科学通报,52(11): 1317-1321.
    Cui Q G,Song J Y,Qin B,et al. 2010. Research on Noise Immunity of Seismic Site and Discriminating Attenuation of Bedrock Outcrop to Disturbance and Seismic Wave[J]. Journal of Seismological Research (in Chinese),33(2): 222-226.崔庆谷,宋金燕,秦波,等. 2010. 台基对地震波、干扰信号的选择性抑制及其抗干扰品质的实验研究[J]. 地震研究,33(2): 222-226.
    Dong S X,Zhang C Y. 2000. Seismic geophone property and precise seismic exploration[J]. Geophysical Prospecting of Petroleum (in Chinese). 39(2): 124-130.董世学,张春雨. 2000. 地震检波器的性能与精确地震勘探[J]. 石油物探,39(2): 124-130.
    Dragoset B. 2000. Introduction to air guns and air-gun arrays[J]. The Leading Edge,19(8): 892-897.
    Futterman W I. 1962. Dispersive body waves[J]. Journal of Geophysical Research,67(13): 5279-5291.
    Guo D R,Deng Z W,Cui S T. 2006. Theories and practice of seismic exploration-seismic data acquisition (in Chinese)[M]. Beijing: Bureau of Geophysical Prospecting,CNPC.郭东润,邓志文,崔士天. 2006. 地震勘探方法理论与实践—地震资料采集分册[M]. 北京: 中国石油集团东方地球物理公司.
    Hao T Y,You Q Y. 2011. Progress of homemade OBS and its application on ocean bottom structure survey[J]. Chinese J. Geophys (in Chinese),54(12): 3352-3361.郝天珧,游庆瑜. 2011. 国产海底地震仪研制现状及其在海底结构探测中的应用[J]. 地球物理学报,54(12): 3352-3361,doi: 10.3969/j.issn.0001-5733.2011.12.033.
    Huang H B,Xia S H,Qiu X L,et al. 2010. Onshore-offshore seismic experiment: signal characteristics and seismic phases received by two adjacent seismic stations[J]. Journal of Tropical Oceanography (in Chinese). 29(6): 153-161.黄海波,夏少红,丘学林,等. 2010. 海陆地震联测:相邻地震台站的信号及震相特征对比[J]. 热带海洋学报,29(6): 153-161.
    Kjartansson E. 1979. Constant Q-wave propagation and attenuation[J]. Journal of Geophysical Research: Solid Earth,84(B9): 4737- 4748.
    Knapp R W. 1990. Vertical resolution of thick beds,thin beds,and thin-bed cyclothems[J]. Geophysics,55(9): 1183-1190.
    Laws R,Landr? M,Amundsen L. 1988. An experimental comparison of three direct methods of marine source signature estimation[J]. Geophysical Prospecting,46(4): 353-389.
    Li C Q,Xu Y F,Yuan Q X,et al. 2017. Amplitude-frequency characteristics testing of the geophone of PDS seismometer[J]. Seismological and Geomagnetic Observation and Research (in Chinese),38(1): 112-116.李从庆,徐以福,原秦喜,等. 2017. PDS型地震仪拾振器幅频特性测试[J]. 地震地磁观测与研究,38(1): 112-116.
    Li Q Z. 1993. The way to obtain a better resolution in seismic prospecting-A systematical analysis of high resolution seismic exploration (in Chinese)[M]. Beijing: Petroleum Industry Press.李庆忠. 1993. 走向精确勘探的道路—高分辨率地震勘探系统工程剖析[M]. 北京: 石油工业出版社.
    Li Q Z. 1997. Some mistaken concepts in high-resolution seismic exploration and the corresponding countermeasures[J]. Oil Geophysical Prospecting (in Chinese),32(6): 751-783.李庆忠. 1997. 地震高分辨率勘探中的误区与对策[J]. 石油地球物理勘探,32(6): 751-783+890.
    Lin J M,Wang B S,Ge H K,et al. 2008. Study on large volume airgun source characteristics and seismic phase analysis[J]. Chinese J. Geophys (in Chinese),51(1): 206-212.林建民,王宝善,葛洪魁,等. 2008. 大容量气枪震源特征及地震波传播的震相分析[J]. 地球物理学报,51(1): 206-212.
    Lin J M,Wang B S,Ge H K,et al. 2010. Characters of large volume air-gun source excitation[J]. Chinese J. Geophys (in Chinese),53(2): 342-349,dOI:10.3969/j.issn.0001-5733.2010.02.012.林建民,王宝善,葛洪魁,等. 2010. 大容量气枪震源子波激发特性分析[J]. 地球物理学报,53(2): 342-349,doi:10.3969/j.issn.0001-5733.2010.02.012.
    Ostrander W J. 1984. Plane-wave reflection coefficients for gas sands at nonnormal angles of incidence[J]. Geophysics,49(10): 1637-1648.
    Qiu X L,Chen Y,Zhu R X,et al. 2007. The application of large volume air gun sources to the onshore-offshore seismic surveys: implication of the experimental results in northern South China Sea[J]. Chinese Science Bulletin (in Chinese),52(4): 553-560.丘学林,陈颙,朱日祥,等. 2007. 大容量气枪震源在海陆联测中的应用: 南海北部试验结果分析[J]. 科学通报,52(4): 463- 469.
    Qiu X L,Zhao M H,Ye C M,et al. 2003. Ocean bottom seismometer and onshore-offshore seismic experiment in northeastern South China Sea[J]. Geotectonica et Metallogenia,27(4): 295-300 (in Chinese and English).丘学林,赵明辉,叶春明,等. 2003. 南海东北部海陆联测与海底地震仪探测[J]. 大地构造与成矿学,27(4): 295-300.
    Robinson E A. 1957. Predictive decomposition of seismic traces[J]. Geophysics,22(4): 767-778.
    Rosa A L R,Ulrych T J. 1991. Processing via spectral modeling[J]. Geophysics,56(8): 1244-1251.
    Sheriff R E,Geldart L P. 1983. Exploration seismology: Vol.1[M]. Cambridge: Cambridge University Press.
    Sinclair J E,Bhattacharya G. 1980. Interaction effects in marine seismic source arrays[J]. Geophysical Prospecting,28(3): 323-332.
    Vaage S,Ursin B. 1987. Computation of signatures of linear airgun arrays[J]. Geophysical Prospecting,35(3): 281-287.
    Vokurka K. 1986. Comparison of Rayleigh’s,Herring’s and Gilmore’s models of gas bubbles[J]. Acta Acustica United with Acustica,59(3): 214-219.
    Walden A T,Hosken J W J. 1985. An investigation of the spectral properties of primary reflection coefficients[J]. Geophysical prospecting,33(3): 400- 435.
    Wang B S,Ge H K,Wang B,et al. 2016. Practices and advances in exploring the subsurface structure and its temporal evolution with repeatable artificial sources[J]. Earthquake research in China (in Chinese),32(2): 168-179.王宝善,葛洪魁,王彬,等. 2016. 利用人工重复震源进行地下介质结构及其变化研究的探索和进展[J]. 中国地震,32(2): 168-179.
    Wang S,Qiu X L,Fang W H,et al. 2018. Features of the onshore-offshore seismic data in Southwest Taiwan Strait and some processing countermeasures[J]. Journal of Tropical Oceanography (in Chinese),37(2):92-99.王笋,丘学林,方伟华,等. 2018. 台湾海峡西南部的海陆联合深地震探测资料特点与处理对策[J]. 热带海洋学报,37(2): 92-99.
    Wang S,Qiu X L,Zhao M H,et al. 2017a. Imaging crustal structure variation across the Changle-Nan’ao fault zone by the joint inversion of seismic and gravity data[J]. Chinese Journal of Geophysics (in Chinese),60(10): 3853-3862,doi:10.6038/cjg20171015.王笋,丘学林,赵明辉等. 2017a. 长乐-南澳断裂带两侧地壳结构差异的地震-重力联合反演[J]. 地球物理学报,60(10): 3853-3862,doi:10.6038/cjg20171015.
    Wang S,Yao D P,Fang W H,et al. 2017b. Cenozoic sedimentary basement off the coast of Zhangpu: a joint interpretation of seismic and gravity data[J]. Progress in Geophysics (in Chinese),32(5): 2241-2245,doi: 10.6038/pg20170554.王笋,姚道平,方伟华,等. 2017b. 漳浦外海新生代沉积基底的地震重力综合研究[J]. 地球物理学进展,32(5): 2241-2245,doi: 10.6038/pg20170554.
    Wang Y X,Wang S,Zhang J D,et al. 2014. Gather waveform correction method[J]. Progress in Geophysics (in Chinese),29(5): 2266-2271,doi: 10.6038/pg20140541.王艳香,王圣,张军舵,等. 2014. 道集波形校正[J]. 地球物理学进展,29(5): 2266-2271,doi: 10.6038/pg20140541.
    Wang Z M. 2003. Test and analysis of geophone’s free frequency in seismic acquisition[J]. Oil Geophysical Prospecting (in Chinese),38(3): 308-316.王增明. 2003. 地震采集中检波器自然频率的试验分析[J]. 石油地球物理勘探,38(3): 308-316.
    Widess M B. 1982. Quantifying resolving power of seismic systems[J]. Geophysics,47(8): 1160-1173.
    Wu S H,Zhao H,Yin C,et al. 2017. Wide-angle seismic reflection characteristics and inversion[J]. Oil Geophysical Prospecting (in Chinese),52(5): 1005-1015.武泗海,赵虎,尹成,等. 2017. 广角地震反射特征及反演研究[J]. 石油地球物理勘探,52(5): 1005-1015.
    Xia S H,Lin W,Chen J T,et al. 2012. Layout of portable stations and signal analysis in an onshore-offshore seismic experiment[J]. Journal of Tropical Oceanography (in Chinese). 31(3): 48-57.夏少红,林伟,陈建涛,等. 2012. 海陆地震联测流动台站布设及信号分析[J]. 热带海洋学报,31(3): 48-57.
    Xu Y H,Wang B S,Wang W T. 2016. Characteristics of air-gun signals excited in the Yangtze River from analysis of permanent stations’ data[J]. Earthquake research in China (in Chinese),32(2): 282-295.徐逸鹤,王宝善,王伟涛. 2016. 利用固定台站分析长江激发气枪信号特征[J]. 中国地震,32(2): 282-295.
    Yang Z F,Cao H,Yang H Z. 2014. Tight gas detection based on the reflectivity dispersion technology[J]. Petroleum Exploration and Development (in Chinese),41(5): 573-577.杨志芳,曹宏,杨慧珠,等. 2014. 基于反射系数频散的气层识别技术[J]. 石油勘探与开发,41(5): 573-577,596.
    Zhao M H,Qiu X L,Xia S H,et al. 2008. Large volume air-gun sources and its seismic waveform characters[J]. Chinese J. Geophys (in Chinese). 51 (2):558-565.赵明辉,丘学林,夏少红,等. 2008. 大容量气枪震源及其波形特征[J]. 地球物理学报,51(2): 558-565,doi: 10.3321/j.issn:0001-5733.2008.02.028.
    Zhu D B. 2010. Dual-energy and dual-channel seismic acquisition technology[J]. Oil Geophysical Prospecting (in Chinese),45(4): 473- 477.朱德兵. 2010. 双能量双通道地震采集技术[J]. 石油地球物理勘探,45(4): 473- 477.
    Zhu D B,Ren Q W. 2004. Characteristics of inertial sensors and their experimental analysis[J]. Advances in Science and Technology of Water Resources (in Chinese). 24(5): 29-33.朱德兵,任青文. 2004. 惯性式传感器性能特点及原位测试实验分析[J]. 水利水电科技进展,24(5): 30-33.
    Ziolkowski A. 1998. Measurement of air-gun bubble oscillations[J]. Geophysics. 63(6): 2009-2024.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700