用户名: 密码: 验证码:
基于微震监测的董家河煤矿底板突水通道孕育机制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation mechanism of water inrush channels in bottom floor of Dongjiahe Coal Mine based on microseismic monitoring
  • 作者:原富珍 ; 马克 ; 庄端阳 ; 王振伟 ; 孙兴业
  • 英文作者:YUAN Fuzhen;MA Ke;ZHUANG Duanyang;WANG Zhenwei;SUN Xingye;State Key Laboratory of Coastal and Offshore Engineering,Dalian University of Technology;Institute of Rock Instability and Seismicity Research,Dalian University of Technology;School of Civil Engineering,North China University of Technology;
  • 关键词:底板突水 ; 微震监测 ; 断层 ; RFPA2D
  • 英文关键词:water-inrush;;microseismic monitoring;;fault;;RFPA2D
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:大连理工大学海岸和近海工程国家重点实验室;大连理工大学岩石破裂与失稳研究中心;北方工业大学土木工程学院;
  • 出版日期:2019-06-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:v.44;No.297
  • 基金:国家重点研发计划资助项目(2017YFC1503103);; 国家自然科学基金面上资助项目(51774064,51774184)
  • 语种:中文;
  • 页:MTXB201906024
  • 页数:11
  • CN:06
  • ISSN:11-2190/TD
  • 分类号:226-236
摘要
针对董家河煤矿工作面断层突水问题,通过构建工作面微震监测系统,对断层区域底板岩体微破裂信息进行分析,再现了过断层前后底板岩体微破裂萌生演化过程。同时将微破裂信息和岩石破裂过程分析系统RFPA2D结合,研究底板断层围岩导水裂隙带发育过程中应力场的变化规律。结果表明:①根据微震事件分布结果分析,工作面位于断层前方85 m时,底板断层开始发生微破裂。过断层前断层附近底板微破坏深度达到25 m,底板具有分段局部破坏特征;过断层后,最大微破坏深度为35 m,微破裂逐渐贯通。②基于微震能量密度分布结果分析,过断层前高能量密度集中区走向长度约15 m,位于煤层下方5~25 m,而紧邻煤层的5 m范围内的断层仍处于稳定状态。过断层后高能量密度区向上盘采空区及深部扩展,沿工作面走向扩展至上盘采空区约80 m范围内,深度方向扩展至煤层下方约35 m。③基于微震监测和数值模拟结果分析底板岩体破坏过程,将底板突水通道扩展过程分为过断层前和过断层后两个阶段,过断层前煤层下方25 m附近断层围岩首先发生微破裂,并沿断层向上扩展,煤层下方5~25 m发生局部微破裂但并未形成贯通;过断层后微破裂自上而下扩展并逐渐贯通,形成突水通道。④基于数值模拟断层应力演化规律分析,过断层前,断层剪应力为负值且逐渐减小,断层上盘有向下滑移趋势,深度越大剪应力越快达到最大,围岩自下而上发生压剪破坏。工作面位于断层附近时,剪应力方向迅速反转并达到最大,断层上盘在承压水作用下有上升趋势,围岩自上而下发生拉破坏且逐渐贯通形成导水通道。
        To overcome the water inrush problem of working face at Dongjiahe coal mine,a microseismic monitoring system was installed to analyze the microcrack data from baseplate of fault zone.The initiation and evolution process of microcracks in baseplate was reconstructed during the working face passes through the fault.Also,the microcrack data was combined with Realistic Failure Process Analysis( RFPA2 D) system to study the variation law of stress fields during the evolution process of water-conductive fissure zone in wall rocks of baseplate fault. The results showed that:① according to the analysis of microseismic event distribution,microcracks occurred when working face is 85 m ahead of the fault.The depth of microcracks in baseplate reached 25 m before working pace passing through the fault and the baseplate has a sectioned local failure characteristics.After working face passing through the fault,the maximum depth of microcracks reached 35 m and microcracks are gradually transfixed.② According to the analysis of microseismic energy density distribution,the concentration zone of high energy density before passing through the fault was about 15 m in strike length,and located in 5-25 m beneath the coal layer. Meanwhile,the fault located within 5 m range of coal layer remained stable.After passing through the fault,the high energy zone expanded to upper goaf and deeper zone,to around 80 m range into the upper goaf along the working face,and around 35 m range beneath the coal layer.③ According to the microseismic monitoring and numerical simulation results,the expansion process of baseplate water inrush tunnel could be divided into two phases as before passing the fault and after passing the fault.Before passing the fault microcracks occurred initially in the wall rocks of fault around 25 m beneath the coal layer,and expanded through the fault.There were microcracks occurred in 5-25 m beneath coal layer but not yet transfixed.After passing the fault,the microcracks expanded from top to bottom and formed a water inrush tunnel. ④ According to the analysis on the evolution law of fault stress based on numerical simulation,before passing the fault,the shear stress of the fault was a negative value and gradually decreasing.The upper part of the fault tended to slip downwards.The greater the depth the faster the shear stress reached its extremum,resulting in a compression and shear failure in wall rocks from bottom to top.Upon the working face reached near the fault,the shear stress reversed rapidly and reached its maximum.The upper part of the fault tended to go upwards under the action of confined water.The surrounding rocks had a pull failure from top to bottom,and cracks gradually transfixed,forming a water conductive tunnel.
引文
[1]宋振骐,郝建,汤建泉,等.断层突水预测控制理论研究[J].煤炭学报,2013,38(9):1511-1515.SONG Zhenqi,HAO Jian,TANG Jianquan,et al. Study on water inrush from fault’s prevention and control theory[J].Journal of China Coal Society,2013,38(9):1511-1515.
    [2]武强,李博,刘守强,等.基于分区变权模型的煤层底板突水脆弱性评价———以开滦蔚州典型矿区为例[J].煤炭学报,2013,38(9):1516-1521.WU Qiang,LI Bo,LIU Shouqiang,et al. Vulnerability assessment of coal floor groundwater bursting based on zoning variable weight model:A case study in the typical mining region of Kailuan[J].Journal of China Coal Society,2013,38(9):1516-1521.
    [3]武强,李博.煤层底板突水变权评价中变权区间及调权参数确定方法[J].煤炭学报,2016,41(9):2143-2149.WU Qiang,LI Bo. Determination of variable weight interval and adjust weight parameters in the variable weight assessment model of water-inrush from coal floor[J].Journal of China Coal Society,2016,41(9):2143-2149.
    [4]郭惟嘉,张士川,孙文斌,等.深部开采底板突水灾变模式及试验应用[J].煤炭学报,2018,43(1):219-227.GUO Weijia,ZHANG Shichuan,SUN Wenbin,et al. Experimental and analysis research on water inrush catastrophe mode from coal seam floor in deep mining[J].Journal of China Coal Society,2018,43(1):219-227.
    [5]施龙青,谭希鹏,王娟,等.基于PCA_Fuzzy_PSO_SVC的底板突水危险性评价[J].煤炭学报,2015,40(1):167-171.SHI Longqing,TAN Xipeng,WANG Juan,et al. Risk assessment of water inrush based on PCA_Fuzzy_PSO_SVC[J]. Journal of China Coal Society,2015,40(1):167-171.
    [6]刘志新,王明明.环工作面电磁法底板突水监测技术[J].煤炭学报,2015,40(5):1117-1125.LIU Zhixin,WANG Mingming. Study on encircling face electromagnetic method for monitoring coal face floor inrush[J].Journal of China Coal Society,2015,40(5):1117-1125.
    [7]胡巍,徐德金.有限元强度折减法在底板突水风险评价中的应用[J].煤炭学报,2013,38(1):27-32.HU Wei,XU Dejin. Application of finite element strength reduction method to risk assessment of groundwater inrush from coal seam floor[J].Journal of China Coal Society,2013,38(1):27-32.
    [8]李振华,翟常治,李龙飞.带压开采煤层底板断层活化突水机理试验研究[J].中南大学学报(自然科学版),2015,46(5):1806-1811.LI Zhenhua,ZHAI Changzhi,LI Longfei.Experimental study on water inrush mechanism due to floor faults activation in mining above confined aquifer[J]. Journal of Central South University(Science and Technology),2015,46(5):1806-1811.
    [9] HE J,LI W,Qiao W.P-H-q evaluation system for risk assessment of water inrush in underground mining in North China coal field,based on rock-breaking theory and water-pressure transmission theory[J].Geomatics,Natural Hazards&Risk,2018,9(1):524-543.
    [10]张培森,颜伟,张文泉,等.固液耦合模式下含断层缺陷煤层回采诱发底板损伤及断层活化突水机制研究[J].岩土工程学报,2016,38(5):877-889.ZHANG Peisen,YAN Wei,ZHANG Wenquan,et al. Mechanism of water inrush due to damage of floor and fault activation induced by mining coal seam with fault defects under fluid-solid coupling mode[J]. Chinese Journal of Geotechnical Engineering,2016,38(5):877-889.
    [11]鲁海峰,沈丹,姚多喜,等.断层影响下底板采动临界突水水压解析解[J].采矿与安全工程学报,2014,31(6):888-895.LU Haifeng,SHEN Dan,YAO Duoxi,et al. Analytical solution of critical water inrush pressure of mining floor affected by fault[J].Journal of Mining&Safety Engineering,2014,31(6):888-895.
    [12]高玉兵,刘世奇,吕斌,等.基于微观裂隙扩张的采场底板突水机理研究[J].采矿与安全工程学报,2016,33(4):624-629.GAO Yubing,LIU Shiqi,LBin,et al. Mechanism study of floor water inrush around mining field based on micro-crack extension[J].Journal of Mining&Safety Engineering,2016,33(4):624-629.
    [13] PANG Y,WANG G,DING Z. Mechanical model of water inrush from coal seam floor based on triaxial seepage experiments[J]. International Journal of Coal Science&Technology,2014,1(4):428-433.
    [14] LIU Z,CAO A,GUO X,et al.Deep-hole water injection technology of strong impact tendency coal seam—A case study in Tangkou coal mine[J]. Arabian Journal of Geosciences,2018,11(2):11-12.
    [15] HE J,DOU L,GONG S,et al.Rock burst assessment and prediction by dynamic and static stress analysis based on micro-seismic monitoring[J].International Journal of Rock Mechanics and Mining Sciences,2017,93:46-53.
    [16] XIN L,WANG Z,WANG G,et al.Technological aspects for underground coal gasification in steeply inclined thin coal seams at Zhongliangshan coal mine in China[J].Fuel,2017,191:486-494.
    [17]唐礼忠,潘长良,杨承祥,等.冬瓜山铜矿微震监测系统及其应用研究[J].金属矿山,2006,364:41-44.TANG Lizhong,PAN Changliang,YANG Chengxiang,et al. Establishment and application of microseismicity monitoring system in Dongguashan copper mine[J].Metal Mine,2006,364:41-44.
    [18]董陇军,孙道元,李夕兵,等.微震与爆破事件统计识别方法及工程应用[J].岩石力学与工程学报,2016,35(7):1423-1433.DONG Longjun,SUN Daoyuan,LI Xibing,et al. A statistical method to identify blasts and microseismic events and its engineering application[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(7):1423-1433.
    [19] TANG C A,WANG J,ZHANG J.Preliminary engineering application of microseismic monitoring technique to rockburst prediction in tunneling of Jinping II project[J]. Journal of Rock Mechanics and Geotechnical Engineering,2010,2(3):193-208.
    [20]徐奴文,李韬,戴峰,等.基于离散元模拟和微震监测的地下厂房围岩稳定性研究[J].四川大学学报(工程科学版),2016(5):1-8.XU Nuwen,LI Tao,DAI Feng,et al.Stability analysis on surrounding rock mass in underground caverns based on discrete element simulation and microseismic monitoring[J]. Journal of Sichuan University(Engineering Science Edition),2016,48(5):1-8.
    [21]马克,唐春安,李连崇,等.基于微震监测与数值模拟的大岗山右岸边坡抗剪洞加固效果分析[J].岩石力学与工程学报,2013,32(6):1239-1247.MA Ke,TANG Chun’an,LI Lianchong,et al.Reinforcement effects of anti-shear gallery of dagangshan right bank slope based on microseismic monitoring and numerical simulations[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(6):1239-1247.
    [22]马克,唐春安,梁正召,等.基于微震监测的地下水封石油洞库施工期围岩稳定性分析[J].岩石力学与工程学报,2016,35(7):1353-1365.MA Ke,TANG Chun’an,LIANG Zhengzhao,et al.Stability analysis of the surrounding rock of underground water-sealed oil storage caverns based on microseismic monitoring during construction[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(7):1353-1365.
    [23] LU C,DOU L,ZHANG N,et al.Microseismic and acoustic emission effect on gas outburst hazard triggered by shock wave:A case study[J].Natural Hazards,2014,73(3):1715-1731.
    [24]李楠,王恩元,Ge Maochen.微震监测技术及其在煤矿的应用现状与展望[J].煤炭学报,2017,42(S1):83-96.LI Nan,WANG Enyuan,GE Maochen. Microseismic monitoring technique and its applications at coal mines:Present status and future prospects[J].Journal of China Coal Society,2017,42(S1):83-96.
    [25]程关文.煤矿突水的微破裂前兆信息微震监测技术研究[D].大连:大连理工大学,2017.CHENG Guanwen. Study on micriseimic monitoring technique for micro-fracture precursor information of water inrush[D].Dalian:Dalian University of Technology,2017.
    [26] LI Lianchong,YANG Tianhong,LIANG Zhengzhao,et al.Numerical investigation of groundwater outbursts near faults in underground coal mines[J].International Journal of Coal Geology,2011,85(3-4):276-288.
    [27] TANG C A,THAM L G,WANG S H,et al.A numerical study of the influence of heterogeneity on the strength characterization of rock under uniaxial tension[J]. Mechanics of Materials,2007,39(4):326-339.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700