用户名: 密码: 验证码:
页岩层理结构对超声波特性响应分析及应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Response analysis of shale bedding structure to ultrasonic characteristics and its application
  • 作者:徐烽淋 ; 陈乔 ; 朱洪林 ; 王丹 ; 陈吉龙 ; 刘璞 ; 姚光华 ; 张阔 ; 霍振永
  • 英文作者:XU Fenglin;CHEN Qiao;ZHU Honglin;WANG Dan;CHEN Jilong;LIU Pu;YAO Guanghua;ZHANG Kuo;HUO Zhenyong;Chongqing Fuling Shale Gas Environmental Protection Research and Development and Technical Service Center;Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences;State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation;Chongqing Mineral Resources Development Company;Shunan Gas Mine,Southwest Oil and Gas Field Branch Company;
  • 关键词:渝东南地区 ; 志留系龙马溪组 ; 页岩 ; 层理 ; 超声波透射 ; 数值模拟 ; 岩石力学
  • 英文关键词:Southeastern Chongqing;;Silurian Longmaxi Formation;;shale;;bedding;;ultrasonic transmission;;numerical simulation;;rock mechanics
  • 中文刊名:SKYK
  • 英文刊名:Petroleum Exploration and Development
  • 机构:重庆市涪陵页岩气环保研发与技术服务中心;中国科学院重庆绿色智能技术研究院;油气藏地质及开发工程国家重点实验室;重庆矿产资源资源开发有限公司;中国石油西南油气田公司蜀南气矿;
  • 出版日期:2018-11-15 09:28
  • 出版单位:石油勘探与开发
  • 年:2019
  • 期:v.46;No.268
  • 基金:国家自然科学基金(41502287);; 重庆市基础与前沿研究计划项目(cstc2015jcyjBX0120);; 重庆市基础与前沿探索项目(cstc2018jcyjAX0670);; 重庆市社会事业与民生保障科技创新专项(cstc2017shmsA120001);; 油气藏地质及开发工程国家重点实验室基金(PLN1506);; 涪陵区科技计划项目(FLKJ,2018BBA3072)
  • 语种:中文;
  • 页:SKYK201901007
  • 页数:10
  • CN:01
  • ISSN:11-2360/TE
  • 分类号:82-91
摘要
基于波动理论,建立渝东南地区下志留统龙马溪组页岩的不同层理结构模型,利用时间二阶、空间四阶的交错网格有限差分法,实现页岩不同层理结构对超声波特性响应的数值模拟计算,利用灰色系统理论筛选层理结构的声学参数敏感因子建立针对层理发育页岩的动态力学参数模型,利用ZY1、YY1井下岩心超声波透射实验结果与ZY2井测井资料对模型进行了验证。结果表明:(1)模拟波形与实验波形相关系数大于80%,数值模拟方法可有效模拟超声波透射实验;(2)声学参数中声波速度是表征页岩层理结构的常规敏感因子,而衰减系数对层理厚度的变化较为敏感,关联系数可达0.89,因此利用衰减系数的归一化结果来综合描述页岩层理可使结果更加准确;(3)模型计算得到的动、静力学参数相关性优于传统模型,利用模型和测井资料反演而获取的岩石力学剖面预测值与实验值吻合较好。研究结果为进一步利用声波测井资料准确预测岩石力学参数奠定基础。
        Based on the wave theory, different bedding structure models for shales in Lower Silurian Longmaxi Formation of southeastern Chongqing area were established, numerical simulations of responses of different bedding structures of shale to ultrasonic wave were carried out by using the second order in time and fourth order in space grid finite difference method, based on the grey system theory, sensitive factors of acoustic parameters of bedding structure were selected, and the dynamic mechanical parameter model of bedded shale was established, which was verified by the ultrasonic transmission experiment results on core down Well ZY1 and YY1 and the logging data of Well ZY2. The results show that:(1) The correlation coefficient between analog and experimental waveforms is greater than 80%, indicating that the numerical simulation method can effectively simulate ultrasonic transmission experiment.(2) Acoustic velocity is a conventional sensitive factor used to characterize shale bedding structure, whereas the attenuation coefficient is sensitive to the change of bedding thickness, with correlation coefficient of 0.89, therefore, using the normalized results of attenuation coefficient to comprehensively describe the shale bedding can make the results more accurate.(3) The correlation between the dynamic and static parameters calculated by the model is better than that of the traditional model; and the predicted values of rock mechanics obtained by using the model and logging data inversion are in good agreement with the experimental values. The research results lay the foundation for further accurate prediction of rock mechanic parameters using sonic logging data.
引文
[1]JOSH M,ESTEBAN L,DELLEPIANE C,et al.Laboratory characterization of shale properties[J].Journal of Petroleum Science and Engineering,2012,88-89(2):107-124.
    [2]VERNIK L,NUR A.Ultrasonic and anisotropy of hydrocarbon source rocks[J].Geophysics,1992,57(5):727-735.
    [3]邓继新,史歌,刘瑞珣,等.泥岩、页岩声速各向异性及其影响因素分析[J].地球物理学报,2004,47(5):862-868.DENG Jixin,SHI Ge,LIU Ruixun,et al.Analysis of the velocity anisotropy and its affection factors in shale and mudstone[J].Chinese Journal of Geophysics,2004,47(5):862-868.
    [4]HORNE S,WALSH J,MILLER D.Elastic anisotropy in the Haynesville Shale from dipole sonic data[J].First Break,2012,30:37-41.
    [5]张白红,张秀勇,钟传利,等.利用纵波探头测定层状岩石的弹性常数[J].岩土工程学报,2010,32(6):861-866.ZHANG Baihong,ZHANG Xiuyong,ZHONG Chuanli,et al.Elastic constants of foliated rock by use of P-wave probes[J].Chinese Journal of Geotechnical Engineering,2010,32(6):861-866.
    [6]YAN F Y,HAN D H,YAO Q L.Oil shale anisotropy measurement and sensitivity analysis[C]//STEEPLES D.SEG Technical Program Expanded Abstracts 2012.Las Vegas:Society of Exploration,2012:1-5.
    [7]程礼军,潘林华,张烨,等.页岩三轴压缩条件下的纵横波速特征[J].断块油气田,2016,23(4):465-469.CHENG Lijun,PAN Linhua,ZHANG Ye,et al.Velocity characteristic of P-wave and S-wave for shale reservoir under tri-axial compression experiments[J].Fault-Block Oil&Gas Field,2016,23(4):465-469.
    [8]邓智,程礼军,潘林华,等.层理倾角对页岩三轴应力应变测试和纵横波速度的影响[J].东北石油大学学报,2016,40(1):33-39.DENG Zhi,CHENG Lijun,PAN Linhua,et al.Effect of bedding angle on shale tri-axial stress,testing and velocity of P-wave and S-wave[J].Journal of Northeast Petroleum University,2016,40(1):33-39.
    [9]CHEN Q,YAO G H,ZHU H L,et al.Numerical simulation of ultrasonic wave transmission experiments in rocks of shale gas reservoirs[J].Aip Advances,2017,7(1):1-7.
    [10]熊健,梁利喜,刘向君,等.川南地区龙马溪组页岩岩石声波透射实验研究[J].地下空间与工程学报,2014,10(5):1071-1077.XIONG Jian,LIANG Lixi,LIU Xiangjun,et al.Experimental study on acoustic penetration through the Longmaxi Formation shale rock in south region of Sichuan Basin[J].Chinese Journal of Underground Space and Engineering,2014,10(5):1071-1077.
    [11]吴涛,刘向君,袁雯,等.川东南地区龙马溪组页岩声波特性研究[J].西部探矿工程,2016,28(2):72-75.WU Tao,LIU Xiangjun,YUAN Wen,et al.Acoustic characteristics of shale in the Longmaxi Formation in southeastern Sichuan Basin[J].West-China Exploration Engineering,2016,28(2):72-75.
    [12]SCHN J H,GEORGI D T,TANG X H.Elastic wave anisotropy and shale distribution[J].Petrophysics,2006,47(3):239-249.
    [13]唐晓明,许松,庄春喜,等.基于弹性波速径向变化的岩石脆裂性定量评价[J].石油勘探与开发,2016,43(3):417-424.TANG Xiaoming,XU Song,ZHUANG Chunxi,et al.Quantitative evaluation of rock brittleness and fracability based on elastic-wave velocity variation around borehole[J].Petroleum Exploration and Development,2016,43(3):417-424.
    [14]马新仿,李宁,尹丛彬,等.页岩水力裂缝扩展形态与声发射解释:以四川盆地志留系龙马溪组页岩为例[J].石油勘探与开发,2017,44(6):974-981.MA Xinfang,LI Ning,YIN Chongbing,et al.Hydraulic fracture propagation geometry and acoustic emission interpretation:A case study of Silurian Longmaxi Formation shale in Sichuan Basin,SWChina[J].Petroleum Exploration and Development,2017,44(6):974-981.
    [15]董良国,马在田,曹景忠,等.一阶弹性波方程交错网格高阶差分解法[J].地球物理学报,2000,43(3):411-419.DONG Liangguo,MA Zaitian,CAO Jingzhong,et al.A staggeredgrid high-order difference method of one-order elastic wave equation[J].Chinese Journal of Geophysics,2000,43(3):411-419.
    [16]陈乔,刘向君,刘洪,等.层理性页岩地层超声波透射实验[J].天然气工业,2013,33(8):140-144.CHEN Qiao,LIU Xiangjun,LIU Hong,et al.An experimental study of ultrasonic penetration through bedding shale reservoirs[J].Natural Gas Industry,2013,33(8):140-144.
    [17]丁伟利,王文锋,张旭光,等.基于边缘方向图的建筑物直线特征提取[J].光学学报,2010,30(10):2904-2911.DING Weili,WANG Wenfeng,ZHANG Xuguang,et al.Extracting straight lines from building image based on edge orientation image[J].Acta Optica Sinica,2010,30(10):2904-2911.
    [18]林英松,葛洪魁,王顺昌.岩石动静力学参数的试验研究[J].岩石力学与工程学报,1998,17(2):216-222.LIN Yingsong,GE Hongkui,WANG Shunchang.Elastic parameters of rocks[J].Chinese Journal of Rock Mechanics and Engineering,1998,17(2):216-222.
    [19]陈乔,刘向君,梁利喜,等.裂缝模型声波衰减系数的数值模拟[J].地球物理学报,2012,55(6):2044-2052.CHEN Qiao,LIU Xiangjun,LIANG Lixi,et al.Numerical simulation of the fractured model acoustic attenuation coefficient[J].Chinese Journal of Geophysics,2012,55(6):2044-2052.
    [20]王倩,王鹏,项德贵,等.页岩力学参数各向异性研究[J].天然气工业,2012,32(12):62-65.WANG Qian,WANG Peng,XIANG Degui,et al.Anisotropic property of mechanical parameters of shales[J].Natural Gas Industry,2012,32(12):62-65.
    [21]刘思峰.灰色系统理论及其应用[M].北京:科学出版社,2010:68-71.LIU Sifeng.Grey system theory and applications[M].Beijing:Science Press,2010:68-71.
    [22]陈冬芳,薛继伟,张漫.全局最优化算法及其应用[J].大庆石油学院学报,2005,29(1):89-93.CHEN Dongfang,XUE Jiwei,ZHANG Man.Global optimization algorithm and its application[J].Journal of Daqing Petroleum Institute,2005,29(1):89-93.
    [23]KUHLMAN R D,PEREZ J I,CLAIBORNE E B.Micro-fracture stress tests,an elastic strain recovery,and differential strain analysis assist in Bakken shale horizontal drilling program[R].SPE 24379,1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700