用户名: 密码: 验证码:
土壤有机碳矿化激发效应的微生物机制研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research advances in microbial mechanisms underlying priming effect of soil organic carbon mineralization
  • 作者:魏圆云 ; 崔丽娟 ; 张曼胤 ; 潘旭
  • 英文作者:WEI Yuan-yun;CUI Li-juan;ZHANG Man-yin;PAN Xu;Institute of Wetland Research,Chinese Academy of Forestry;Beijing Key Laboratory of Wetland Services and Restoration;National Ecosystem Research Station of Hengshui Wetland;
  • 关键词:激发效应 ; 土壤有机碳矿化 ; r型微生物 ; K型微生物 ; 生态化学计量
  • 英文关键词:priming effect;;soil organic carbon mineralization;;r-strategist microorganisms;;K-strategist microorganisms;;ecological stoichiometry
  • 中文刊名:STXZ
  • 英文刊名:Chinese Journal of Ecology
  • 机构:中国林业科学研究院湿地研究所;湿地生态功能与恢复北京市重点实验室;河北衡水湖湿地生态系统国家定位观测研究站;
  • 出版日期:2018-12-28 13:24
  • 出版单位:生态学杂志
  • 年:2019
  • 期:v.38;No.309
  • 基金:中央级公益性科研院所基本科研业务费专项(CAFBB2017QA041)资助
  • 语种:中文;
  • 页:STXZ201904032
  • 页数:10
  • CN:04
  • ISSN:21-1148/Q
  • 分类号:278-287
摘要
激发效应是外源易分解有机质输入在短时期内改变原有土壤有机碳矿化过程的自然现象,是联系土壤有机碳收支过程之间的关键环节,对于土壤有机碳库的积累和稳定具有重要意义。土壤微生物对外源有机质输入的响应是形成激发效应的内在驱动力。外源有机质促进或抑制土壤有机碳矿化的微生物机制主要包括:外源有机质促进多种类群微生物及其分泌胞外酶的协同作用,外源有机质驱使特定类群微生物加强对受限资源的利用,外源有机质的化学计量特征导致微生物对适宜分解底物的选择性利用。对于激发效应现象更符合哪一种理论的解释,以及何种类群微生物主导了激发效应过程,目前尚未形成普遍共识。外源有机质总量、化学组成和碳氮比以及温度、水分等环境因子,都可通过影响微生物对外源有机质和土壤有机质的利用从而作用于激发效应。针对现有研究存在的争议与不足,今后需利用新兴技术手段进一步明确不同微生物类群在激发效应过程中的作用,并从外源有机质化学计量特征与微生物需求之间均衡关系的角度展开研究,以期促成激发效应研究与生态化学计量学相关理论的融合与发展。
        Priming effect(PE) is defined as the changes of soil organic carbon mineralization after the inputs of external labile organic matter in short term.The PE is a natural phenomenon that occurs in various terrestrial ecosystems and plays an important role in soil carbon cycling.The responses of soil microbes to the inputs of external labile organic matter are the internal drivers for PE.The microbial mechanisms of PE included:(1) co-metabolism of a group of microorganisms and extracellular enzymes in the presence of labile organic matter;(2) labile organic matter provides energy for the special microorganisms to degrade recalcitrant organic matter under nutrient constraint;(3) microorganisms preferentially utilize the readily degradable substrates which match their stoichiometric demands.There is no consensus on those mechanisms and on the dominant soil microbes in the PE.Besides,the decomposition of soil organic matter and external organic matter is affected by the quantity and quality of external organic matter,all of which may influence PE.Soil temperature and moisture also affect the PE,but their importance may be less than external organic matter.In view of the existing controversy and deficiency about the PE studies,we propose that future research should adopt new methods to further clarify the contributions of various microbes to the PE,and should focus on the imbalance between microbial demand and external organic matter in order to promote the integration and development of the PE studies and the theory of ecological stoichiometry.
引文
陈龙池,廖利平,汪思龙,等.2002.根系分泌物生态学研究.生态学杂志,21(6):57-62.
    廖畅,田秋香,汪东亚,等.2016.外源碳输入对中亚热带森林深层土壤碳矿化和微生物决策群落的影响.应用生态学报,27(9):2848-2854.
    刘世荣,王晖,栾军伟.2011.中国森林土壤碳储量与土壤碳过程研究进展.生态学报,31(19):5437-5448.
    沈菊培,贺纪正.2011.微生物介导的碳氮循环过程对全球气候变化的响应.生态学报,31(11):2957-2967.
    孙悦,徐兴良,Kuzyakov Y.2014.根际激发效应的发生机制及其生态重要性.植物生态学报,38(1):62-75.
    王清奎.2011.碳输入方式对森林土壤碳库和碳循环的影响研究进展.应用生态学报,22(4):1075-1081.
    吴建国,吕佳佳.2008.土壤有机碳和氮分解对温度变化的响应机制.生态学杂志,27(9):1601-1611.
    徐小锋,田汉勤,万师强.2007.气候变暖对陆地生态系统碳循环的影响.植物生态学报,31(2):175-188.
    杨钙仁,童成立,张文菊,等.2005.陆地碳循环中的微生物分解作用及其影响因素.土壤通报,36(4):605-609.
    袁淑芬,汪思龙,张伟东.2015.外源有机碳和温度对土壤有机碳分解的影响.土壤通报,46(4):916-922.
    张政,蔡小真,唐偲頔,等.2017.可溶性有机质输入对杉木人工林表层土壤有机碳矿化的激发效应.生态学报,37(22):7660-7667.
    郑聚锋,程琨,潘根兴,等.2011.关于中国土壤碳库及固碳潜力研究的若干问题.科学通报,56(26):2162-2173.
    Aerts R.1997.Climate,leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems:A triangular relationship.Oikos,79:439-449.
    Bernard L,Mougel C,Maron PA,et al.2007.Dynamics and identification of soil microbial populations actively assimilating carbon from13C-labelled wheat residue as estimated by DNA-and RNA-SIP techniques.Environmental Microbiology,9:752-764.
    Blagodatskaya E,Khomyakov N,Myachina O,et al.2014.Microbial interactions affect sources of priming induced by cellulose.Soil Biology and Biochemistry,74:39-49.
    BlagodatskayaЕ,Kuzyakov Y.2008.Mechanisms of real and apparent priming effects and their dependence on soil microbial biomass and community structure:Critical review.Biology and Fertility of Soils,45:115-131.
    Bradford MA,Wieder WR,Bonan GB,et al.2016.Managing uncertainty in soil carbon feedbacks to climate change.Nature Climate Change,6:751-758.
    Buchkowski RW,Schmitz OJ,Bradford MA.2015.Microbial stoichiometry overrides biomass as a regulator of soil carbon and nitrogen cycling.Ecology,96:1139-1149.
    Chen L,Zhang J,Zhao B,et al.2015.Bacterial community structure in maize stubble-amended soils with different moisture levels estimated by bar-coded pyrosequencing.Applied Soil Ecology,86:62-70.
    Chen R,Senbayram M,Blagodatsky S,et al.2014.Soil C and N availability determine the priming effect:Microbial Nmining and stoichiometric decomposition theories.Global Change Biology,20:2356-2367.
    Chowdhury S,Farrell M,Bolan N.2014.Priming of soil organic carbon by malic acid addition is differentially affected by nutrient availability.Soil Biology and Biochemistry,77:158-169.
    Cleveland CC,Liptzin D.2007.C∶N∶P stoichiometry in soil:Is there a“Redfield ratio”for the microbial biomass.Biogeochemistry,85:235-252.
    Cole JJ,Prairie YT,Caraco NF,et al.2007.Plumbing the global carbon cycle:Integrating inland waters into the terrestrial carbon budget.Ecosystems,10:172-185.
    Craine JM,Morrow C,Fierer N.2007.Microbial nitrogen limitation increases decomposition.Ecology,88:2105-2113.
    Creamer CA,de Menezes AB,Krull E S,et al.2015.Microbial community structure mediates response of soil C decomposition to litter addition and warming.Soil Biology and Biochemistry,80:175-188.
    Crow SE,Lajtha K,Filley TR,et al.2009.Sources of plantderived carbon and stability of organic matter in soil:Implications for global change.Global Change Biology,15:2003-2019.
    de Graaff MA,Classen AT,Castro HF,et al.2010.Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates.New Phytologist,188:1055-1064.
    Di Lonardo DP,De Boer W,Klein Gunnewiek PJA,et al.2017.Priming of soil organic matter:Chemical structure of added compounds is more important than the energy content.Soil Biology and Biochemistry,108:41-54.
    Dimassi B,Mary B,Fontaine S,et al.2014.Effect of nutrients availability and long-term tillage on priming effect and soil C mineralization.Soil Biology and Biochemistry,78:332-339.
    Emsens WJ,Aggenbach CJ,Grootjans AP,et al.2016.Eutrophication triggers contrasting multilevel feedbacks on litter accumulation and decomposition in fens.Ecology,97:2680-2690.
    Fabian J,Zlatanovic S,Mutz M,et al.2017.Fungal-bacterial dynamics and their contribution to terrigenous carbon turnover in relation to organic matter quality.ISME Journal,11:415-425.
    Fontaine S,Bardoux G,Abbadie L,et al.2004.Carbon input to soil may decrease soil carbon content.Ecology Letters,7:314-320.
    Fontaine S,Henault C,Aamor A,et al.2011.Fungi mediate long term sequestration of carbon and nitrogen in soil through their priming effect.Soil Biology and Biochemistry,43:86-96.
    Fontaine S,Mariotti A,Abbadie L,et al.2003.The priming effect of organic matter:A question of microbial competition.Soil Biology and Biochemistry,35:837-843.
    Frainer A,Jabiol J,Gessner MO,et al.2016.Stoichiometric imbalances between detritus and detritivores are related to shifts in ecosystem functioning.Oikos,125:861-871.
    Geisseler D,Horwath WR,Scow KM.2011.Soil moisture and plant residue addition interact in their effect on extracellular enzyme activity.Pedobiologia,54:71-78.
    Ghee C,Neilson R,Hallett PD,et al.2013.Priming of soil organic matter mineralisation is intrinsically insensitive to temperature.Soil Biology and Biochemistry,66:20-28.
    Guenet B,Danger M,Abbadie L,et al.2010a.Priming effect:Bridging the gap between terrestrial and aquatic ecology.Ecology,91:2850-2861.
    Guenet B,Danger M,Harrault L,et al.2014.Fast mineralization of land-born C in inland waters:First experimental evidences of aquatic priming effect.Hydrobiologia,721:35-44.
    Guenet B,Juarez S,Bardoux G,et al.2012.Evidence that stable C is as vulnerable to priming effect as is more labile Cin soil.Soil Biology and Biochemistry,52:43-48.
    Guenet B,Neill C,Bardoux G,et al.2010b.Is there a linear relationship between priming effect intensity and the amount of organic matter input.Applied Soil Ecology,46:436-442.
    He N,Yu G.2016.Stoichiometrical regulation of soil organic matter decomposition and its temperature sensitivity.Ecology and Evolution,6:620-627.
    Heimann M,Reichstein M.2008.Terrestrial ecosystem carbon dynamics and climate feedbacks.Nature,451:289-292.
    Hessen DO,gren GI,Anderson TR,et al.2004.Carbon sequestration in ecosystems:The role of stoichiometry.Ecology,85:1179-1192.
    Hopkins FM,Filley TR,Gleixner G,et al.2014.Increased belowground carbon inputs and warming promote loss of soil organic carbon through complementary microbial responses.Soil Biology and Biochemistry,76:57-69.
    Jagadamma S,Mayes MA,Steinweg JM,et al.2014.Substrate quality alters the microbial mineralization of added substrate and soil organic carbon.Biogeosciences,11:4665-4678.
    Jia J,Feng X,He J,et al.2017.Comparing microbial carbon sequestration and priming in the subsoil versus topsoil of a Qinghai-Tibetan alpine grassland.Soil Biology and Biochemistry,104:141-151.
    Kuzyakov Y,Friedel JK,Stahr K.2000.Review of mechanisms and quantification of priming effects.Soil Biology and Biochemistry,32:1485-1498.
    Kuzyakov Y.2010.Priming effects:Interactions between living and dead organic matter.Soil Biology and Biochemistry,42:1363-1371.
    Li L,Zhu-Barker X,Ye R,et al.2018.Soil microbial biomass size and soil carbon influence the priming effect from carbon inputs depending on nitrogen availability.Soil Biology and Biochemistry,119:41-49.
    Li Q,Tian Y,Zhang X,et al.2017.Labile carbon and nitrogen additions affect soil organic matter decomposition more strongly than temperature.Applied Soil Ecology,114:152-160.
    Liu XJA,Sun J,Mau RL,et al.2017.Labile carbon input determines the direction and magnitude of the priming effect.Applied Soil Ecology,109:7-13.
    Luo Z,Wang E,Smith C.2015.Fresh carbon input differentially impacts soil carbon decomposition across natural and managed systems.Ecology,96:2806-2813.
    Manzoni S,Jackson RB,Trofymow JA,et al.2008.The global stoichiometry of litter nitrogen mineralization.Science,321:684-686.
    Manzoni S,Taylor P,Richter A,et al.2012.Environmental and stoichiometric controls on microbial carbon-use efficiency in soils.New Phytologist,196:79-91.
    Marín-Spiotta E,Gruley KE,Crawford J,et al.2014.Paradigm shifts in soil organic matter research affect interpretations of aquatic carbon cycling:Transcending disciplinary and ecosystem boundaries.Biogeochemistry,117:279-297.
    Mason-Jones K,Kuzyakov Y.2017.“Non-metabolizable”glucose analogue shines new light on priming mechanisms:Triggering of microbial metabolism.Soil Biology and Biochemistry,107:68-76.
    Mau RL,Dijkstra P,Schwartz E,et al.2018.Warming induced changes in soil carbon and nitrogen influence priming responses in four ecosystems.Applied Soil Ecology,124:110-116.
    Mau RL,Liu CM,Aziz M,et al.2015.Linking soil bacterial biodiversity and soil carbon stability.ISME Journal,9:1477-1480.
    Meyer N,Welp G,Rodionov A,et al.2018.Nitrogen and phosphorus supply controls soil organic carbon mineralization in tropical topsoil and subsoil.Soil Biology and Biochemistry,119:152-161.
    Miao S,Ye R,Qiao Y,et al.2016.The solubility of carbon inputs affects the priming of soil organic matter.Plant and Soil,410:129-138.
    Mooshammer M,Wanek W,Zechmeister-Boltenstern S,et al.2014.Stoichiometric imbalances between terrestrial decomposer communities and their resources:Mechanisms and implications of microbial adaptations to their resources.Frontiers in Microbiology,5:22.
    Ng EL,Patti AF,Rose MT,et al.2014.Functional stoichiometry of soil microbial communities after amendment with stabilised organic matter.Soil Biology and Biochemistry,76:170-178.
    Ng EL,Patti AF,Rose MT,et al.2015.Do organic inputs alter resistance and resilience of soil microbial community to drying.Soil Biology and Biochemistry,81:58-66.
    Nottingham AT,Griffiths H,Chamberlain PM,et al.2009.Soil priming by sugar and leaf-litter substrates:A link to microbial groups.Applied Soil Ecology,42:183-190.
    Nottingham AT,Turner BL,Stott AW,et al.2015.Nitrogen and phosphorus constrain labile and stable carbon turnover in lowland tropical forest soils.Soil Biology and Biochemistry,80:26-33.
    Pascault N,Ranjard L,Kaisermann A,et al.2013.Stimulation of different functional groups of bacteria by various plant residues as a driver of soil priming effect.Ecosystems,16:810-822.
    Paterson E,Sim A.2013.Soil-specific response functions of organic matter mineralization to the availability of labile carbon.Global Change Biology,19:1562-1571.
    Qiao N,Xu X,Hu Y,et al.2016.Carbon and nitrogen additions induce distinct priming effects along an organic-matter decay continuum.Scientific Reports,6:19865.
    Qiu Q,Wu L,Ouyang Z,et al.2016.Priming effect of maize residue and urea N on soil organic matter changes with time.Applied Soil Ecology,100:65-74.
    Raymond PA,Hartmann J,Lauerwald R,et al.2013.Global carbon dioxide emissions from inland waters.Nature,503:355-359.
    Reinsch S,Ambus P,Thornton B,et al.2013.Impact of future climatic conditions on the potential for soil organic matter priming.Soil Biology and Biochemistry,65:133-140.
    Rousk J,Frey SD.2016.Revisiting the hypothesis that fungalto-bacterial dominance characterizes turnover of soil organic matter and nutrients.Ecological Monographs,85:457-472.
    Rousk K,Michelsen A,Rousk J.2016.Microbial control of soil organic matter mineralization responses to labile carbon in subarctic climate change treatments.Global Change Biology,22:4150-4161.
    Sinsabaugh RL,Follstad Shah JJ.2010.Ecoenzymatic stoichiometry of recalcitrant organic matter decomposition:The growth rate hypothesis in reverse.Biogeochemistry,102:31-43.
    Sinsabaugh RL,Turner BL,Talbot JM,et al.2016.Stoichiometry of microbial carbon use efficiency in soils.Ecological Monographs,86:172-189.
    Tian Q,Yang X,Wang X,et al.2016.Microbial community mediated response of organic carbon mineralization to labile carbon and nitrogen addition in topsoil and subsoil.Biogeochemistry,128:125-139.
    Wang H,Boutton TW,Xu W,et al.2015a.Quality of fresh organic matter affects priming of soil organic matter and substrate utilization patterns of microbes.Scientific Reports,5:10102.
    Wang H,Xu W,Hu G,et al.2015b.The priming effect of soluble carbon inputs in organic and mineral soils from a temperate forest.Oecologia,178:1239-1250.
    Wang Q,Wang Y,Wang S,et al.2014.Fresh carbon and nitrogen inputs alter organic carbon mineralization and microbial community in forest deep soil layers.Soil Biology and Biochemistry,72:145-151.
    Wang Q,Zeng Z,Zhong M.2016.Soil moisture alters the response of soil organic carbon mineralization to litter addition.Ecosystems,19:450-460.
    Whitman T,Pepe-Ranney C,Enders A,et al.2016.Dynamics of microbial community composition and soil organic carbon mineralization in soil following addition of pyrogenic and fresh organic matter.ISME Journal,10:2918-2930.
    Xiao C,Guenet B,Zhou Y,et al.2015.Priming of soil organic matter decomposition scales linearly with microbial biomass response to litter input in steppe vegetation.Oikos,124:649-657.
    Xu X,Thornton PE,Post WM.2013.A global analysis of soil microbial biomass carbon,nitrogen and phosphorus in terrestrial ecosystems.Global Ecology and Biogeography,22:737-749.
    Zhang W,Wang X,Wang S.2013.Addition of external organic carbon and native soil organic carbon decomposition:Ameta-analysis.PLo S ONE,8:e54779.
    Zhu B,Cheng W.2011.Rhizosphere priming effect increases the temperature sensitivity of soil organic matter decomposition.Global Change Biology,17:2172-2183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700