用户名: 密码: 验证码:
骨髓间充质干细胞复合支架材料治疗骨缺损:研究现状及前景展望
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bone marrow mesenchymal stem cells combined with scaffolds in treatment of bone defects: present and future
  • 作者:池玉磊 ; 卜宪敏 ; 查玉梅 ; 王海滨 ; 孟纯阳 ; 吴彬
  • 英文作者:Chi Yulei;Bu Xianmin;Zha Yumei;Wang Haibin;Meng Chunyang;Wu Bin;Clinical Institute, Jining Medical University;Jining No.1 People's Hospital;Department of Orthopedics, Affiliated Hospital of Jining Medical University;
  • 关键词:骨髓间充质干细胞 ; 支架材料 ; 骨缺损 ; 骨组织工程 ; 成骨分化 ; 新生血管 ; 骨膜 ; 细胞外基质 ; 国家自然科学基金
  • 英文关键词:bone marrow mesenchymal stem cells;;scaffold material;;bone defect;;bone tissue engineering;;osteogenic differentiation;;neovascularization;;periosteum;;extracellular matrix;;National Natural Science Foundation of China
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:济宁医学院临床医学院;济宁市第一人民医院;济宁医学院附属医院骨科;
  • 出版日期:2019-07-18
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.886
  • 基金:国家自然科学基金(81572205),项目负责人:孟纯阳;; 山东省自然科学基金(ZR2014CQ042),项目负责人:吴彬;; 济宁医学院教师扶持基金(JYFC2018FKJ048),项目负责人:吴彬;济宁医学院贺林院士基金(JYHL2018FMS13),项目负责人:吴彬~~
  • 语种:中文;
  • 页:XDKF201929027
  • 页数:8
  • CN:29
  • ISSN:21-1581/R
  • 分类号:163-170
摘要
背景:骨缺损是临床常见且较难解决的问题,骨髓间充质干细胞复合支架材料治疗骨缺损是目前研究的热点。目的:总结骨髓间充质干细胞复合支架材料治疗骨缺损的最新研究进展,为临床应用提供理论依据。方法:文章第一作者通过检索中国知网、万方、维普、PubMed、Embase和WebofScience数据库2009年1月至2018年12月相关文献,检索词为"骨髓间充质干细胞,分离培养,支架材料,骨缺损,骨组织工程,成骨分化,新生血管,骨膜,细胞外基质""bone marrow mesenchymal stem cells,isolation,scaffolds,bone defects,bone tissue engineering,osteogenesis,angiogenesis,periosteum,extracellular matrix"。最终选取符合纳入标准的文献共计95篇。结果与结论:大量研究表明,骨髓间充质干细胞是治疗骨缺损的理想种子细胞,其与支架材料复合能够促进骨缺损修复。目前,骨髓间充质干细胞复合支架材料治疗骨缺损正处于新的发展时代,是一种很有前景的骨缺损治疗方法,其中在骨髓间充质干细胞的分离培养、定向分化及支架材料研究方面取得了很大的进展,并进一步证明了新生血管、骨膜和细胞外基质在整个骨组织工程中的重要作用,这一研究对未来临床治疗骨缺损具有重大意义。
        BACKGROUND: Bone defect is a common problem encountered in clinical practice. To this end, bone marrow mesenchymal stem cells combined with scaffolds is a hot topic in the treatment of bone defects.OBJECTIVE: To summarize the latest research progress in bone marrow mesenchymal stem cells combined with scaffolds in the treatment of bone defects, which provides a theoretical basis for clinical application.METHODS: The first author searched CNKI, WanFang, VIP, PubMed, Embase and Web of Science databases from January 2009 to December 2018. Search terms were "bone marrow mesenchymal stem cells, isolation, scaffolds, bone defects, bone tissue engineering,osteogenesis, angiogenesis, periosteum, extracellular matrix" in Chinese and English. Totals of 95 articles that met the inclusion criteria were selected.RESULTS AND CONCLUSION: Numerous studies have shown that bone marrow mesenchymal stem cells are ideal seed cells for the treatment of bone defects, and cell-scaffold composites can promote the repair and healing of bone defects. To date, bone marrow mesenchymal stem cells combined with scaffolds as a promising treatment for bone defects have been in the new development era. Great progress has been achieved in terms of isolation, culture and directed differentiation of bone marrow mesenchymal stem cells as well as scaffold materials. These findings further indicate the important roles of new vessels, periosteum and extracellular matrix in bone tissue engineering, which are of great significance for the future clinical treatment of bone defects
引文
[1]Majidinia M,Sadeghpour A,Yousefi B.The roles of signaling pathways in bone repair and regeneration.J Cell Physiol.2018;233(4):2937-2948.
    [2]Liu Z,Yuan X,Fernandes G,et al.The combination of nano-calcium sulfate/platelet rich plasma gel scaffold with BMP2 gene-modified mesenchymal stem cells promotes bone regeneration in rat critical-sized calvarial defects.Stem Cell Res Ther.2017;8(1):122.
    [3]Chu W,Gan Y,Zhuang Y,et al.Mesenchymal stem cells and porousβ-tricalcium phosphate composites prepared through stem cell screen-enrich-combine(-biomaterials)circulating system for the repair of critical size bone defects in goat tibia.Stem Cell Res Ther.2018;9(1):157.
    [4]Kim DK,Kim JI,Hwang TI,et al.Bioengineered Osteoinductive Broussonetia kazinoki/Silk Fibroin Composite Scaffolds for Bone Tissue Regeneration.ACS Appl Mater Interfaces.2017;9(2):1384-1394.
    [5]袁昊龙,王志刚,张锴.Masquelet技术重建骨缺损研究进展[J].中华骨科杂志,2018,38(21):1330-1336.
    [6]胡汉,田竞,周大鹏.成人长骨大范围骨缺损治疗的研究进展[J].中国临床实用医学,2016,7(6):102-104.
    [7]戚晓阳,邱旭升,施鸿飞,等.大段骨缺损的治疗进展[J].实用骨科杂志,2017,23(8):715-719.
    [8]Nauth A,Schemitsch E,Norris B,et al.Critical-Size Bone Defects:Is There a Consensus for Diagnosis and Treatment.J Orthop Trauma.2018;32 Suppl 1:S7-S11.
    [9]Mauffrey C,Barlow BT,Smith W.Management of segmental bone defects.J Am Acad Orthop Surg.2015;23(3):143-153.
    [10]Whitely M,Cereceres S,Dhavalikar P,et al.Improved in situ seeding of 3D printed scaffolds using cell-releasing hydrogels.Biomaterials.2018;185:194-204.
    [11]Kfoury Y,Scadden DT.Mesenchymal cell contributions to the stem cell niche.Cell Stem Cell.2015;16(3):239-253.
    [12]Caplan AI.Mesenchymal stem cells.J Orthop Res.1991;9(5):641-650.
    [13]Dominici M,Le Blanc K,Mueller I,et al.Minimal criteria for defining multipotent mesenchymal stromal cells.The International Society for Cellular Therapy position statement.Cytotherapy.2006;8(4):315-317.
    [14]Caplan AI.Mesenchymal Stem Cells:Time to Change the Name!Stem Cells Transl Med.2017;6(6):1445-1451.
    [15]Caplan AI.What's in a name?Tissue Eng Part A.2010;16(8):2415-2417.
    [16]De Windt TS,Vonk LA,Saris DBF.Response to:Mesenchymal Stem Cells:Time to Change the Name!Stem Cells Transl Med.2017;6(8):1747-1748.
    [17]Meppelink AM,Wang XH,Bradica G,et al.Rapid isolation of bone marrow mesenchymal stromal cells using integrated centrifuge-based technology.Cytotherapy.2016;18(6):729-739.
    [18]Hoch AI,Leach JK.Concise review:optimizing expansion of bone marrow mesenchymal stem/stromal cells for clinical applications.Stem Cells Transl Med.2015;4(4):412.
    [19]Nicodemou A,Danisovic L.Mesenchymal stromal/stem cell separation methods:concise review.Cell Tissue Bank.2017;18(4):443-460.
    [20]Dvorakova J,Hruba A,Velebny V,et al.Isolation and characterization of mesenchymal stem cell population entrapped in bone marrow collection sets.Cell Biol Int.2008;32(9):1116-1125.
    [21]Hung SC,Chen NJ,Hsieh SL,et al.Isolation and characterization of size-sieved stem cells from human bone marrow.Stem Cells.2002;20(3):249-258.
    [22]Lunde K,Solheim S,Aakhus S,et al.Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction.N Engl J Med.2006;355(12):1199-1209.
    [23]Hu Y,Lou B,Wu X,et al.Comparative Study on In Vitro Culture of Mouse Bone Marrow Mesenchymal Stem Cells.Stem Cells Int.2018;2018:6704583.
    [24]Bara JJ,Richards RG,Alini M,et al.Concise review:Bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture:implications for basic research and the clinic.Stem Cells.2014;32(7):1713-1723.
    [25]Liu H,Wei LK,Jian XF,et al.Isolation,culture and induced differentiation of rabbit mesenchymal stem cells into osteoblasts.Exp Ther Med.2018;15(4):3715-3724.
    [26]Huang C,Geng J,Jiang S.MicroRNAs in regulation of osteogenic differentiation of mesenchymal stem cells.Cell Tissue Res.2017;368(2):229-238.
    [27]Yang H,Guo Y,Wang D,et al.Effect of TAK1 on osteogenic differentiation of mesenchymal stem cells by regulating BMP-2 via Wnt/β-catenin and MAPK pathway.Organogenesis.2018;14(1):36-45.
    [28]Gruber J,Yee Z,Tolwinski NS.Developmental Drift and the Role of Wnt Signaling in Aging.Cancers(Basel).2016;8(8)i:E73.
    [29]Shi J,Chi S,Xue J,et al.Emerging Role and Therapeutic Implication of Wnt Signaling Pathways in Autoimmune Diseases.J Immunol Res.2016;2016:9392132.
    [30]Krishnan V,Bryant HU,Macdougald OA.Regulation of bone mass by Wnt signaling.J Clin Invest.2006;116(5):1202-1209.
    [31]Majidinia M,Alizadeh E,Yousefi B,et al.Downregulation of Notch Signaling Pathway as an Effective Chemosensitizer for Cancer Treatment.Drug Res(Stuttg).2016;66(11):571-579.
    [32]Majidinia M,Alizadeh E,Yousefi B,et al.Co-inhibition of Notch and NF-κB Signaling Pathway Decreases Proliferation through Downregulating IκB-αand Hes-1 Expression in Human Ovarian Cancer OVCAR-3 Cells.Drug Res(Stuttg).2017;67(1):13-19.
    [33]Dishowitz MI,Zhu F,Sundararaghavan HG,et al.Jagged1immobilization to an osteoconductive polymer activates the Notch signaling pathway and induces osteogenesis.J Biomed Mater Res A.2014;102(5):1558-1567.
    [34]Tu X,Chen J,Lim J,et al.Physiological notch signaling maintains bone homeostasis via RBPjk and Hey upstream of NFATc1.PLoS Genet.2012;8(3):e1002577.
    [35]Wang C,Inzana JA,Mirando AJ,et al.NOTCH signaling in skeletal progenitors is critical for fracture repair.J Clin Invest.2016;126(4):1471-1481.
    [36]Carreira AC,Lojudice FH,Halcsik E,et al.Bone morphogenetic proteins:facts,challenges,and future perspectives.J Dent Res.2014;93(4):335-345.
    [37]Deschaseaux F,SensébéL,Heymann D.Mechanisms of bone repair and regeneration.Trends Mol Med.2009;15(9):417-429.
    [38]Schmidt-Bleek K,Willie BM,Schwabe P,et al.BMPs in bone regeneration:Less is more effective,a paradigm-shift.Cytokine Growth Factor Rev.2016;27:141-148.
    [39]Li Y,Jin D,Xie W,et al.Mesenchymal Stem Cells-Derived Exosomes:A Possible Therapeutic Strategy for Osteoporosis.Curr Stem Cell Res Ther.2018;13(5):362-368.
    [40]Ogata K,Katagiri W,Hibi H.Secretomes from mesenchymal stem cells participate in the regulation of osteoclastogenesis in vitro.Clin Oral Investig.2017;21(6):1979-1988.
    [41]Kuroda K,Kabata T,Hayashi K,et al.The paracrine effect of adipose-derived stem cells inhibits osteoarthritis progression.BMC Musculoskelet Disord.2015;16:236.
    [42]Dimitriou R,Jones E,McGonagle D,et al.Bone regeneration:current concepts and future directions.BMCMed.2011;9:66.
    [43]Siddiqui HA,Pickering KL,Mucalo MR.A Review on the Use of Hydroxyapatite-Carbonaceous Structure Composites in Bone Replacement Materials for Strengthening Purposes.Materials(Basel).2018;11(10):E1813.
    [44]Ho-Shui-Ling A,Bolander J,Rustom LE,et al.Bone regeneration strategies:Engineered scaffolds,bioactive molecules and stem cells current stage and future perspectives.Biomaterials.2018;180:143-162.
    [45]Wang W,Yeung KWK.Bone grafts and biomaterials substitutes for bone defect repair:A review.Bioact Mater.2017;2(4):224-247.
    [46]Dhivya S,Keshav Narayan A,Logith Kumar R,et al.Proliferation and differentiation of mesenchymal stem cells on scaffolds containing chitosan,calcium polyphosphate and pigeonite for bone tissue engineering.Cell Prolif.2018;51(1):e12408.
    [47]Ke X,Zhuang C,Yang X,et al.Enhancing the Osteogenic Capability of Core-Shell Bilayered Bioceramic Microspheres with Adjustable Biodegradation.ACS Appl Mater Interfaces.2017;9(29):24497-24510.
    [48]Zhu Y,Zhang K,Zhao R,et al.Bone regeneration with micro/nano hybrid-structured biphasic calcium phosphate bioceramics at segmental bone defect and the induced immunoregulation of MSCs.Biomaterials.2017;147:133-144.
    [49]Wang D,Lin Y,Chen L,et al.Guided bone regeneration using a bone tissue engineering complex consisting of a poly-dl-lactide membrane and bone mesenchymal stem cells.Oncotarget.2017;9(23):16380-16388.
    [50]Kim IG,Hwang MP,Du P,et al.Bioactive cell-derived matrices combined with polymer mesh scaffold for osteogenesis and bone healing.Biomaterials.2015;50:75-86.
    [51]刘相杰,宋科官.生物支架材料及间充质干细胞在骨组织工程中的研究与应用[J].中国组织工程研究,2018,22(10):1618-1624.
    [52]De Melo Pereira D,Habibovic P.Biomineralization-Inspired Material Design for Bone Regeneration.Adv Healthc Mater.2018;7(22):e1800700.
    [53]Kozusko SD,Riccio C,Goulart M,et al.Chitosan as a Bone Scaffold Biomaterial.J Craniofac Surg.2018;29(7):1788-1793.
    [54]Wang Y,Wang K,Li X,et al.3D fabrication and characterization of phosphoric acid scaffold with a HA/β-TCPweight ratio of 60:40 for bone tissue engineering applications.PLoS One.2017;12(4):e0174870.
    [55]Kutikov AB,Skelly JD,Ayers DC,et al.Templated repair of long bone defects in rats with bioactive spiral-wrapped electrospun amphiphilic polymer/hydroxyapatite scaffolds.ACS Appl Mater Interfaces.2015;7(8):4890-4901.
    [56]Inzana JA,Olvera D,Fuller SM,et al.3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration.Biomaterials.2014;35(13):4026-4034.
    [57]Goh YQ,Ooi CP.Fabrication and characterization of porous poly(L-lactide)scaffolds using solid-liquid phase separation.JMater Sci Mater Med.2008;19(6):2445-2452.
    [58]Raftery RM,Mencía Casta?o I,Chen G,et al.Translating the role of osteogenic-angiogenic coupling in bone formation:Highly efficient chitosan-pDNA activated scaffolds can accelerate bone regeneration in critical-sized bone defects.Biomaterials.2017;149:116-127.
    [59]Raftery RM,Mencía-Casta?o I,Sperger S,et al.Delivery of the improved BMP-2-Advanced plasmid DNA within a gene-activated scaffold accelerates mesenchymal stem cell osteogenesis and critical size defect repair.J Control Release.2018;283:20-31.
    [60]Mandrycky C,Wang Z,Kim K,et al.3D bioprinting for engineering complex tissues.Biotechnol Adv.2016;34(4):422-434.
    [61]Melchels FP,Feijen J,Grijpma DW.A review on stereolithography and its applications in biomedical engineering.Biomaterials.2010;31(24):6121-6130.
    [62]Zhang L,Yang G,Johnson BN,et al.Three-dimensional(3D)printed scaffold and material selection for bone repair.Acta Biomater.2019;84:16-33.
    [63]Chou DT,Wells D,Hong D,et al.Novel processing of iron-manganese alloy-based biomaterials by inkjet 3-Dprinting.Acta Biomater.2013;9(10):8593-8603.
    [64]Trachtenberg JE,Placone JK,Smith BT,et al.Extrusion-based 3D printing of poly(propylene fumarate)scaffolds with hydroxyapatite gradients.J Biomater Sci Polym Ed.2017;28(6):532-554.
    [65]Gudapati H,Yan J,Huang Y,et al.Alginate gelation-induced cell death during laser-assisted cell printing.Biofabrication.2014;6(3):035022.
    [66]Ozbolat IT,Yu Y.Bioprinting toward organ fabrication:challenges and future trends.IEEE Trans Biomed Eng.2013;60(3):691-699.
    [67]Yan Y,Chen H,Zhang H,et al.Vascularized 3D printed scaffolds for promoting bone regeneration.Biomaterials.2019;190-191:97-110.
    [68]Vo TN,Shah SR,Lu S,et al.Injectable dual-gelling cell-laden composite hydrogels for bone tissue engineering.Biomaterials.2016;83:1-11.
    [69]Chen Y,Liu X,Liu R,et al.Zero-order controlled release of BMP2-derived peptide P24 from the chitosan scaffold by chemical grafting modification technique for promotion of osteogenesis in vitro and enhancement of bone repair in vivo.Theranostics.2017;7(5):1072-1087.
    [70]Cui ZK,Kim S,Baljon JJ,et al.Design and Characterization of a Therapeutic Non-phospholipid Liposomal Nanocarrier with Osteoinductive Characteristics To Promote Bone Formation.ACS Nano.2017;11(8):8055-8063.
    [71]Killington K,Mafi R,Mafi P,et al.A Systematic Review of Clinical Studies Investigating Mesenchymal Stem Cells for Fracture Non-Union and Bone Defects.Curr Stem Cell Res Ther.2018;13(4):284-291.
    [72]Donneys A,Nelson NS,Page EE,et al.Targeting angiogenesis as a therapeutic means to reinforce osteocyte survival and prevent nonunions in the aftermath of radiotherapy.Head Neck.2015;37(9):1261-1267.
    [73]Xu WL,Ong HS,Zhu Y,et al.In Situ Release of VEGFEnhances Osteogenesis in 3D Porous Scaffolds Engineered with Osterix-Modified Adipose-Derived Stem Cells.Tissue Eng Part A.2017;23(9-10):445-457.
    [74]Yu WL,Sun TW,Qi C,et al.Enhanced osteogenesis and angiogenesis by mesoporous hydroxyapatite microspheres-derived simvastatin sustained release system for superior bone regeneration.Sci Rep.2017;7:44129.
    [75]Wang T,Zhai Y,Nuzzo M,et al.Layer-by-layer nanofiber-enabled engineering of biomimetic periosteum for bone repair and reconstruction.Biomaterials.2018;182:279-288.
    [76]Ko E,Lee JS,Kim H,et al.Electrospun Silk Fibroin Nanofibrous Scaffolds with Two-Stage Hydroxyapatite Functionalization for Enhancing the Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells.ACS Appl Mater Interfaces.2018;10(9):7614-7625.
    [77]Hynes RO.The extracellular matrix:not just pretty fibrils.Science.2009;326(5957):1216-1219.
    [78]Hu H,Zhao P,Liu J,et al.Lanthanum phosphate/chitosan scaffolds enhance cytocompatibility and osteogenic efficiency via the Wnt/β-catenin pathway.J Nanobiotechnology.2018;16(1):98.
    [79]A A,Menon D,T B S,et al.Bioinspired Composite Matrix Containing Hydroxyapatite-Silica Core-Shell Nanorods for Bone Tissue Engineering.ACS Appl Mater Interfaces.2017;9(32):26707-26718.
    [80]Aquino-Martínez R,Angelo AP,Pujol FV.Et al.Calcium-containing scaffolds induce bone regeneration by regulating mesenchymal stem cell differentiation and migration.Stem Cell Res Ther.2017;8(1):265.
    [81]Cheng CW,Solorio LD,Alsberg E.Decellularized tissue and cell-derived extracellular matrices as scaffolds for orthopaedic tissue engineering.Biotechnol Adv.2014;32(2):462-484.
    [82]Lu H,Hoshiba T,Kawazoe N,et al.Cultured cell-derived extracellular matrix scaffolds for tissue engineering.Biomaterials.2011;32(36):9658-9666.
    [83]Kim B,Ventura R,Lee BT.Functionalization of porous BCPscaffold by generating cell-derived extracellular matrix from rat bone marrow stem cells culture for bone tissue engineering.J Tissue Eng Regen Med.2018;12(2):e1256-e1267.
    [84]Harvestine JN,Vollmer NL,Ho SS,et al.Extracellular Matrix-Coated Composite Scaffolds Promote Mesenchymal Stem Cell Persistence and Osteogenesis.Biomacromolecules.2016;17(11):3524-3531.
    [85]Yan Y,Cheng B,Chen K,et al.Enhanced Osteogenesis of Bone Marrow-Derived Mesenchymal Stem Cells by a Functionalized Silk Fibroin Hydrogel for Bone Defect Repair.Adv Healthc Mater.2019;8(3):e1801043.
    [86]Ho CY,Sanghani A,Hua J,et al.Mesenchymal stem cells with increased stromal cell-derived factor 1 expression enhanced fracture healing.Tissue Eng Part A.2015;21(3-4):594-602.
    [87]Song JE,Tripathy N,Lee DH,et al.Quercetin Inlaid Silk Fibroin/Hydroxyapatite Scaffold Promotes Enhanced Osteogenesis.ACS Appl Mater Interfaces.2018;10(39):32955-32964.
    [88]Wu S,Yu Q,Sun Y,et al.Synergistic effect of a LPEMF and SPIONs on BMMSC proliferation,directional migration,and osteoblastogenesis.Am J Transl Res.2018;10(5):1431-1443.
    [89]?poner P,Filip S,Ku?era T,et al.Utilizing Autologous Multipotent Mesenchymal Stromal Cells andβ-Tricalcium Phosphate Scaffold in Human Bone Defects:A Prospective,Controlled Feasibility Trial.Biomed Res Int.2016;2016:2076061.
    [90]Gjerde C,Mustafa K,Hellem S,et al.Cell therapy induced regeneration of severely atrophied mandibular bone in a clinical trial.Stem Cell Res Ther.2018;9(1):213.
    [91]Quarto R,Mastrogiacomo M,Cancedda R,et al.Repair of large bone defects with the use of autologous bone marrow stromal cells.N Engl J Med.2001;344(5):385-386.
    [92]Hibi H,Yamada Y,Ueda M,et al.Alveolar cleft osteoplasty using tissue-engineered osteogenic material.Int J Oral Maxillofac Surg.2006;35(6):551-555.
    [93]Shayesteh YS,Khojasteh A,Soleimani M,et al.Sinus augmentation using human mesenchymal stem cells loaded into a beta-tricalcium phosphate/hydroxyapatite scaffold.Oral Surg Oral Med Oral Pathol Oral Radiol Endod.2008;106(2):203-209.
    [94]Meijer GJ,de Bruijn JD,Koole R,et al.Cell based bone tissue engineering in jaw defects.Biomaterials.2008;29(21):3053-3061.
    [95]Redondo LM,García V,Peral B,et al.Repair of maxillary cystic bone defects with mesenchymal stem cells seeded on a cross-linked serum scaffold.J Craniomaxillofac Surg.2018;46(2):222-229.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700