用户名: 密码: 验证码:
心肌支架材料在心肌梗死治疗中的应用与研究热点
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress of myocardial scaffolds in the treatment of myocardial infarction
  • 作者:赵亮 ; 邱晓娜 ; 李霞飞
  • 英文作者:Zhao Liang;Qiu Xiaona;Li Xiafei;College of Engineering,Peking University;College of Life Sciences and Technology,Xinxiang Medical University;Central Laboratory,Datong Third People's Hospital;First Clinical College,Shanxi Medical University;
  • 关键词:心肌梗塞 ; 心脏 ; 人工组 ; 组织工程 ; 心肌支架材料 ; 心肌梗死 ; 心肌组织工程 ; 纤维蛋白 ; 壳聚糖 ; 天然生物材料 ; 胶原 ; 透明质酸 ; 脱细胞心肌材料 ; 人工合成材料 ; 复合材料
  • 英文关键词:,Myocardial Infarction;;Heart,Artificial;;Tissue Engineering
  • 中文刊名:XDKF
  • 英文刊名:Chinese Journal of Tissue Engineering Research
  • 机构:北京大学工学院;新乡医学院生命科学技术学院;大同市第三人民医院中心实验室;山西医科大学第一临床学院;
  • 出版日期:2019-02-27
  • 出版单位:中国组织工程研究
  • 年:2019
  • 期:v.23;No.871
  • 基金:第二届大学生命科联赛立项课题(SKYLS017),项目负责人:赵亮;; 河南省高等学校重点科研项目(17A180034),项目负责人:赵亮~~
  • 语种:中文;
  • 页:XDKF201914024
  • 页数:6
  • CN:14
  • ISSN:21-1581/R
  • 分类号:153-158
摘要
背景:近年来心肌组织工程快速崛起,通过应用外源性生物材料模拟细胞外基质,使受损的心肌细胞得到有效修复或重建,在治疗心肌梗死等缺血性心脏病方面具有很大的潜在价值。目的:综述心肌支架材料在心肌梗死治疗应用中的研究进展。方法:应用计算机检索NCBI数据库和万方数据2008至2018年发表的相关文献,检索关键词为"心肌支架材料,心肌梗死;Myocardial scaffold materials,myocardial infarction"。结果与结论:目前常用的心肌支架材料主要有天然生物材料(包括胶原/Matrigel、纤维蛋白、壳聚糖、透明质酸、海藻盐酸等)、人工合成材料(聚酯类人工合成材料与纳米材料)及复合支架材料。由于心脏环境和心脏功能的复杂性,支架材料的选择应充分考虑到生物相容性、免疫原性、导电性、降解率、对缺血缺氧易感性等各方面因素,尽管目前许多支架设计开始满足所提出的诸多要求,但应用于临床仍然存在着各种各样的问题,相信随着研究者的进一步深入及应用工具的进一步发展,人们可期待能够创造出接近原生组织生理机能的心肌支架,使心脏功能得到更理想的恢复。
        BACKGROUND: In recent years, myocardial tissue engineering has developed rapidly. By using exogenous biomaterials to simulate extracellular matrix, damaged myocardial cells can be effectively repaired or reconstructed, which has great potential value in the treatment of ischemic heart diseases such as myocardial infarction. OBJECTIVE: To review the research progress of myocardial scaffolds in the treatment of myocardial infarction. METHODS: NCBI and WanFang databases were retrieved for relevant articles published from 2008 to 2018, with the key words of "myocardial scaffold materials, myocardial infarction" in English and Chinese, respectively. RESULTS AND CONCLUSION: At present, the commonly used myocardial scaffolds are mainly natural biomaterials(including collagen/Matrigel, fibrin, chitosan, hyaluronic acid, and algae hydrochloric acid), synthetic materials(polyester synthetic materials and nanomaterials) and composite scaffolds. Due to the complexity of cardiac environment and heart function, the selection of scaffold materials should fully take account of biocompatibility, immunogenicity, conductivity, degradation rate and susceptibility to ischemia and hypoxia. Although many scaffold designs have begun to meet many requirements, there are still many kinds of stent materials for clinical application. It is believed that with the further development of researchers and application tools, people can expect to create myocardial scaffolds close to the physiological function of the original tissue, so that the heart function can be better restored.
引文
[1]Davidenko N,Schuster CF,Bax DV,et al.Control of crosslinking for tailoring collagen-based scaffolds stability and mechanics.Acta Biomaterialia.2015;25:131-142.
    [2]Tang J,Vandergriff A,Wang Z,et al.A Regenerative Cardiac Patch Formed by Spray Painting of Biomaterials onto the Heart.Tissue Eng Part C Methods.2017;23(3):146-155.
    [3]Xu B,Li Y,Deng B,et al.Chitosan hydrogel improves mesenchymal stem cell transplant survival and cardiac function following myocardial infarction in rats.Exp Ther Med.2017;13(2):588-594.
    [4]Chiu LL,Radisic M.Controlled release of thymosin beta4using collagen-chitosan composite hydrogels promotes epicardial cell migration and angiogenesis.J Control Release.2011;155(3):376-385.
    [5]Guyette JP,Charest JM,Mills RW,et al.Bioengineering Human Myocardium on Native Extracellular Matrix.Circ Res.2016;118(1):56-72.
    [6]Sánchez PL,Fernandez-Santos ME,Costanza S,et al.Acellular human heart matrix:A critical step toward whole heart grafts.Biomaterials.2015;61:279-289.
    [7]方易冰,廖斌.心肌组织工程支架材料研究进展[J].中国修复重建外科杂志,2011,4(3):361-364.
    [8]Engelmayr GC Jr,Cheng M,Bettinger CJ,et al.Accordion-like honeycombs for tissue engineering of cardiac anisotropy.Nat Mater.2008;7(12):1003-1010.
    [9]Boothe SD,Myers JD,Pok S,et al.The Effect of Substrate Stiffness on Cardiomyocyte Action Potentials.Cell Biochem Biophys.2016;74(4):527-535.
    [10]Marsano A,Maidhof R,Wan LQ,et al.Scaffold stiffness affects the contractile function of three-dimensional engineered cardiac constructs.Biotechnol Prog.2010;26(5):1382-1390.
    [11]Castellano D,Blanes M,Marco B,et al.A comparison of electrospun polymers reveals poly(3-hydroxybutyrate)fiber as a superior scaffold for cardiac repair.Stem Cells Dev.2014;23(13):1479-1490.
    [12]Soares JS,Moore JE Jr.Biomechanical Challenges to Polymeric Biodegradable Stents.Ann Biomed Eng.2016;44(2):560-579.
    [13]Kalbacova M,Broz A,Kong J,et al.Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells.Carbon.2010;48(15):4323-4329.
    [14]Kaiser NJ,Coulombe KL.Physiologically inspired cardiac scaffolds for tailored in vivo function and heart regeneration.Biomed Mater.2015;10(3):034003.
    [15]Moheman A,Alam MS,Mohammad A,et al.Recent trends in electrospinning of polymer nanofibers and their applications in ultra thin layer chromatography.Adv Colloid Interface Sci.2016;229:1-24.
    [16]Giannopoulos AA,Steigner ML,George E,et al.Cardiothoracic Applications of 3-dimensional Printing.J Thorac Imaging.2016;31(5):253-272.
    [17]Inzana JA,Olvera D,Fuller SM,et al.3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration.Biomaterials.2014;35(13):4026-4034.
    [18]Serra T,Planell JA,Navarro M.High-resolution PLA-based composite scaffolds via 3-D printing technology.Acta Biomater.2013;9(3):5521-5530.
    [19]曹志强,孙吉鹏,李欣阳,等.3D打印组织工程支架的构建研究进展[J].解放军医药杂志,2016,28(11):1-5.
    [20]Efraim Y,Sarig H,Cohen Anavy N,et al.Biohybrid cardiac ECM-based hydrogels improve long term cardiac function post myocardial infarction.Acta Biomaterialia.2017;50:220-233.
    [21]Amezcua R,Shirolkar A,Fraze C,et al.Nanomaterials for Cardiac Myocyte Tissue Engineering.Nanomaterials(Basel,Switzerland).2016;6(7):133.
    [22]Martins AM,Eng G,Caridade SG,et al.Electrically conductive chitosan/carbon scaffolds for cardiac tissue engineering.Biomacromolecules.2014;15(2):635-643.
    [23]陈焱,何顺舟,李晓莉,等.静电纺丝聚己内酯纳米纤维支架支持小鼠诱导多能干细胞表达心肌细胞标志物[J].基础医学与临床,2016,36(4):86-91.
    [24]刘耀文,王淑瑶,叶劲松,等.聚乳酸/碳纳米管导电复合纤维用于心肌组织工程的研究[J].化工新型材料,2016,44(2):216-218.
    [25]Ahadian S,Ramón-Azcón J,Estili M,et al.Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication.Sci Rep.2014;4:4271.
    [26]Sun H,Zhou J,Huang Z,et al.Carbon nanotube-incorporated collagen hydrogels improve cell alignment and the performance of cardiac constructs.Int J Nanomedicine.2017;12:3109-3120.
    [27]Martinelli V,Cellot G,Toma FM,et al.Carbon nanotubes promote growth and spontaneous electrical activity in cultured cardiac myocytes.Nano lett.2012;12(4):1831-1838.
    [28]Liu Y,Liang X,Wang S,et al.Electrospun Poly(lactic-co-glycolic acid)/Multiwalled Carbon Nanotube Nanofibers for Cardiac Tissue Engineering.J Biomater Tissue Eng.2016;6(9):719-728.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700