用户名: 密码: 验证码:
撞击流技术在发电相关领域的研究与应用进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Progress in Research and Application of Impinging Stream Technology in Power Generation Industry
  • 作者:张立栋 ; 王硕 ; 李伟伟 ; 何志超 ; 张鹏龙
  • 英文作者:ZHANG Lidong;WANG Shuo;LI Weiwei;HE Zhichao;ZHANG Penglong;School of Energy and Power Engineering, Northeast Electric Power University;Huaneng Baiyanghe Power Generation Co.Ltd.;Huaneng Chaohu Power Generation Co.Ltd.;China Energy Engineering Group Northeast No.1 Electric Power Construction Co.Ltd.;SDIC Genting Meizhouwan Power Co.Ltd.;
  • 关键词:撞击流 ; 发电行业 ; 节能降耗 ; 应用前景
  • 英文关键词:impinging streams;;power generation industry;;energy saving and consumption reduction;;application prospects
  • 中文刊名:SLJX
  • 英文刊名:Power Generation Technology
  • 机构:东北电力大学能源与动力工程学院;华能白杨河发电有限公司;华能巢湖发电有限公司;中国能源建设集团东北电力第一工程有限公司;国投云顶湄洲湾电力有限公司;
  • 出版日期:2018-08-31
  • 出版单位:发电技术
  • 年:2018
  • 期:v.39;No.182
  • 基金:教育部长江学者和创新团队发展计划项目(IRT_17R19)~~
  • 语种:中文;
  • 页:SLJX201804009
  • 页数:9
  • CN:04
  • ISSN:33-1405/TH
  • 分类号:68-76
摘要
节能降耗是中国发电行业当前发展的主要方向。撞击流在撞击的瞬间能够产生极大的相间相对速度,并形成一个相对狭窄的高度湍动区,能够极好地提高热、质传递。撞击流的这种性质可被广泛应用于发电行业的相关领域,尤其是在燃烧、干燥、污水处理、脱硫脱硝、煤气化、除尘等领域具有广阔的应用前景。在简述撞击流技术基本原理的基础上,总结了近年来撞击流技术的研究进展,并就撞击流技术在发电行业相关领域的应用前景进行了讨论,以期为撞击流技术在发电行业的进一步应用提供参考。
        The ene rgy sa vi ng an d c on su mpti on reduction is the main development direction of China's power generation industry. The impinging stream can generate a great relative phase-to-phase velocity at the moment of impact, and form a relatively narrow height turbulence zone, which can greatly improve the heat and mass transfer. This nature of flow can be widely used in the related fields of the power generation industry, especially in the areas of combustion, dry ing, sewage treatment, desulfurization and denitrification, coal gasification, dustremoval, etc. In this paper, based on a brief introduction to the basic principle and classification of impinging stream technology, the research progress of impinging stream technology in recent years is summarized, and the application prospects of impinging stream technology in related fields of power generation industry are discussed, in order to provide reference for further application of impact flow technology in the power generation industry.
引文
[1]Elperin I T,Heat and mass transfer in opposing currents[J].Journal of Engineering Physics,1961,6:62-68.
    [2]伍沅.撞击流:原理·性质·应用[M].北京:化学工业出版社,2006:3-100.
    [3]伍沅,周玉新,郭嘉,等.液体连续相撞击流强化过程特性及相关技术装备的研发和应用[J].化工进展,2011,30(3):463-472.
    [4]龙辉,黄晶晶.“十三五”燃煤发电设计技术发展方向分析[J].发电技术,2018,39(1):13-17.
    [5]王学栋,仲昭伟,董洋,等.多变量因素下的锅炉低压省煤器节能效果测试与分析[J].发电技术,2018,39(2):140-145.
    [6]Zhang W,Chai Z,Shi B,et al.Lattice Boltzmann study of flow and mixing characteristics of two-dimensional confined impinging streams with uniform and non-uniform inlet jets[J].Computers&Mathematics with Applications,2013,65(4):638-647.
    [7]Hosseinalipour M,Esmailpour K,Yahyaee A,et al.Numerical simulation of flow and thermal characteristics of harmonic pulsed laminar impinging streams[J].Asia-Pacific Journal of Chemical Engineering,2012,7(5):607-617.
    [8]孙志刚,李伟锋,刘海峰,等.平面撞击流振荡特性[J].化工学报,2009,60(2):338-344.
    [9]吴丹,栗晶,柳朝晖,等.平面撞击流的直接数值模拟[J].工程热物理学报,2013,34(10):1878-1881.
    [10]屠功毅,李伟锋,黄国峰,等.平面撞击流偏斜振荡的实验研究与大涡模拟[J].物理学报,2013,62(8):346-353.
    [11]李伟锋,孙志刚,刘海峰,等.两喷嘴对置撞击流驻点偏移规律[J].化工学报,2008,59(1):46-52.
    [12]Zhang J,Yan J,Dong X,et al.Experimental study on turbulence properties in the dual nozzle opposed impinging stream mixer[J].Canadian Journal of Chemical Engineering,2017,95(3):550-558.
    [13]Jafarikojour M,Sohrabi M,Royaee S J,et al.A new model for residence time distribution of impinging streams reactors using descending-sized stirred tanks in series[J].Chemical Engineering Research&Design,2016,109:86-96.
    [14]Tamir A.Impinging stream reactors:fundamentals and applications[M].New York:Elsevier,1994:14.
    [15]朱文学,段续.对撞流中单一颗粒运动的理论分析[J].农业机械学报,2002,33(3):50-52.
    [16]孙志刚,李伟锋,刘海峰,等.同轴对称撞击流中的颗粒运动行为[J].化学反应工程与工艺,2009,25(2):97-103.
    [17]刘红娟,邹春,田智威,等.撞击流中单颗粒运动行为的数值模拟[J].华中科技大学学报(自然科学版),2008,36(5):106-109.
    [18]Wang S,Li X,Fang J,et al.Simulations of flow behavior of oscillatory opposed dilute gas–solid jets[J].Powder Technology,2015,284(4):595-603.
    [19]Wu D,Li J,Liu Z,et al.Numerical study of particle behavior in laminar axisymmetric opposed-jet flows[J].Powder Technology,2014,270:176-184.
    [20]李光晓,王钊,范怡平,等.气液两相逆流-错流撞击洗涤器内两相流动与传质特性[J].过程工程学报,2015,15(2):198-204.
    [21]李友凤,叶红齐,周虎,等.撞击流微反应器气液传质研究[J].化学工程,2012,40(3):48-52.
    [22]Abraham Z,Luzzatio K,Tamir A.Application of free impinging streams to the combustion of gas and pulverized coal[J].Combustion Science&Technology,1988,60(1-3):31-44.
    [23]张和平,张建伟,刘洁.撞击流技术在煤粉燃烧上的应用[J].环境卫生工程,2003,11(2):57-60.
    [24]代松涛,颜世森,梁钦锋,等.撞击流对火焰稳定性影响的试验研究[J].洁净煤技术,2008,14(4):40-42.
    [25]王擎,关键,孙东红,等.卧式煤无烟燃烧锅炉炉内冷态流场的数值模拟[J].中国电机工程学报,2003,23(1):163-166.
    [26]柏静儒,王擎,孙佰仲,等.煤无烟燃烧锅炉炉内燃烧特性分析[J].环境工程学报,2006,7(8):140-144.
    [27]Amir R,Arezou N.Mathematical modeling and simulation of drying of a single wet particle in a coaxial impinging stream dryer[J].Chemical Engineering Communications,2009,197(5):692-708.
    [28]Kwanchai C,Sakamon D,Somchart S.Numerical simulation of multiphase transport phenomena during impinging stream drying of a particulate material[J].Drying Technology,2012,30(11-12):1227-1237.
    [29]Khomwachirakul P,Devahastin S,Swasdisevi T,et al.Simulation of flow and drying characteristics of high-moisture particles in an impinging stream dryer via CFD-DEM[J].Drying Technology,2015,34(4):403-419.
    [30]Czaplicki A,S?owik K,Stec M.Experimental investigations of a pilot scale coal impinging stream dryer[J/OL].International Journal of Coal Preparation&Utilization,2017,https://doi.org/10.1080/19392699.2017.1390456
    [31]黄凯,刘华彥,伍沅.循环撞击流干燥设备和过程研究[J].高校化学工程学报,2000,14(6):517-523.
    [32]Thanit S,Sakamon D,Suchart T,et al.Comparative evaluation of hot-air and superheated-steam impinging stream drying as novel alternatives for paddy drying[J].Drying Technology,2013,31(6):717-725.
    [33]Dehkordi a M,Savari C.Effects of contaminants on the mass-transfer characteristics of a two-impingingstreams gas-liquid reactor[J].Chemical Engineering&Technology,2011,34(11):1797-1806.
    [34]Royaee S J,Sohrabi M,Shafeghat A.Wastewater treatment using photo-impinging streams cyclone reactor:Computational fluid dynamics and kinetics modeling[J].Korean Journal of Chemical Engineering,2014,31(2):240-247.
    [35]Jafarikojour M,Mohammadi M,Sohrabi M,et al.Evaluation and modeling of a newly designed impinging stream photoreactor equipped with a Ti O2coated fiberglass cloth[J].Royal Society of Chemistry Advances,2015,5(12):9019-9027.
    [36]Wu H,Li F B,Li Q,et al.Design of impinging stream-cavitations and micro-electrolysis reactor and treatment of high concentration wastewater[J].Advanced Materials Research,2013,781-784:1994-1997.
    [37]张雷,陆丽萍.多喷嘴对置式水煤浆气化炉运行总结[J].中外能源,2013,18(7):97-101.
    [38]王雷,陈丽.3000T/D多喷嘴对置式水煤浆气化炉运行总结[J].中氮肥,2017(3):47-49.
    [39]Xu J,Hui Z,Dai Z,et al.Numerical simulation of opposed multi-burner gasifier under different coal loading ratio[J].Fuel,2016,174:97-106.
    [40]Li C,Dai Z,Xu J,et al.Numerical study of the particle residence time and flow characters in an opposed multi-burner gasifier[J].Powder Technology,2015,286:64-72.
    [41]Guo Q,Gong Y,Xu J,et al.Particulate matter properties in a bench-scale entrained-flow coal water slurry gasifier[J].Powder Technology,2014,254(2):125-130.
    [42]Fan P,Yan G,Zhang Q,et al.Experimental study of the impinging flame height in an opposed multi-burner gasifier[J].Energy&Fuels,2014,28(8):4895-4904.
    [43]Berman Y,Tanklevsky A,Oren Y,et al.Modeling and experimental studies of SO2 absorption in coaxial cylinders with impinging streams[J].Chemical Engineering Science,2000,55(5):1023-1028.
    [44]Wu Y,Li Q,Li F.Desulfurization in the gascontinuous impinging stream gas-liquid reactor[J].Chemical Engineering Science,2007,62(6):1814-1824.
    [45]Li Y,Li F,Qi H.Numerical and experimental investigation of the effects of impinging streams to enhance Ca-based sorbent capture of SO2[J].Chemical Engineering Journal,2012,204-206(38):188-197.
    [46]钱达蔚,张吉超,关梦龙,等.撞击流吸收器湿法同时脱硫脱硝三维数值模拟[J].中国电机工程学报,2013,33(29):39-48.
    [47]宋杰,吴波,苏银海,等.撞击距离对撞击流吸收器湿法脱硫脱硝特性影响的三维数值模拟[J].发电设备,2017,31(1):1-8.
    [48]邓文义,沈恒根,苏亚欣.燃烧源PM2.5控制技术研究现状及展望[J].环境工程,2014,32(7):85-90.
    [49]Song C,He J,Wu L,et al.Health burden attributable to ambient PM2.5 in China[J].Environmental Pollution,2017,223:575.
    [50]Wu J,Zhu J,Li W,et al.Estimation of the PM2.5 Health Effects in China during 2000-2011[J].Environmental Science and Pollution Research International,2017,24(11):1-13.
    [51]Shang Y,Sun Z,Cao J,et al.Systematic review of chinese studies of short-term exposure to air pollution and daily mortality[J].Environment International,2013,54(4):100-111.
    [52]朱宝山.燃煤锅炉大气污染物净化技术手册[M].北京:中国电力出版社,2006:58-104.
    [53]张明星,陈海焱,颜翠平,等.倾斜式对喷流除尘效率影响因素的正交实验研究[J].现代化工,2006,26(1):277-280.
    [54]Wu H,Pan D,Xiong G,et al.The abatement of fine particles from desulfurized flue gas by heterogeneous vapor condensation coupling two impinging streams[J].Chemical Engineering&Processing Process Intensification,2016,108:174-180.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700