用户名: 密码: 验证码:
连续油管水平井压裂携砂液流动压降及敏感性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:FLOW PRESSURE DROP AND SENSITIVITY OF THE SAND-LADING FLUID FOR THE HORIZONTAL WELL WITH THE COILED TUBING
  • 作者:王洪涛 ; 陈勋 ; 高庆曌 ; 付璐
  • 英文作者:WANG Hongtao;CHEN Xun;GAO Qingzhao;FU Lu;DOE Key Laboratory of Enhancing Oil-Gas Recovery of Northeast Petroleum University;Mining Engineering College of North China University of Science and Technology;No.6 Oil Production Plant of Daqing Oilfield Co Ltd.;Discipline Construction Department of Northeast Petroleum University;
  • 关键词:连续油管 ; 携砂压裂 ; 流动压降 ; 敏感性分析
  • 英文关键词:coiled tubing;;sand carrying/lading fluid;;flow pressure drop;;sensitivity analysis
  • 中文刊名:DQSK
  • 英文刊名:Petroleum Geology & Oilfield Development in Daqing
  • 机构:东北石油大学提高油气采收率教育部重点实验室;华北理工大学矿业工程学院;大庆油田有限责任公司第六采油厂;东北石油大学学科建设处;
  • 出版日期:2018-02-01
  • 出版单位:大庆石油地质与开发
  • 年:2018
  • 期:v.37;No.185
  • 基金:国家科技重大专项“钻井工程一体化软件”(2016ZX05020-006);; 国家自然科学基金面上项目“基于精细回压控制的地层-井筒多相流耦合机理研究”(51474073)
  • 语种:中文;
  • 页:DQSK201801020
  • 页数:5
  • CN:01
  • ISSN:23-1286/TE
  • 分类号:120-124
摘要
连续油管压裂过程中携沙压裂液流动摩阻压降是压裂设计的重要内容,也是现场压裂施工成功的关键。压裂过程中携砂压裂液流经螺旋管、非螺旋段(垂直段+水平段)、环空压裂段,预测压裂流动压降难度大,现场设计数据与实际出入较大。在前人研究的基础上,以大庆某外径60.3 mm、壁厚2.769 mm的连续油管压裂数据为例,对连续油管水平井压裂携砂液流动压降进行分析。结果表明:螺旋段是连续油管在整个压降系统中最敏感部分,且这种敏感性会随着排量的增大而增强;环空压裂段摩阻压降与排量、环空管径比正相关;整体上压降随岩屑体积分数的增加而增加,但在此过程中会出现短暂下降窗口。
        Flow friction pressure drop of the sand-lading fracturing fluid in the process of the coiled-tubing fracturing is the important content of the fracturing design,it is also the key to the success of the fracturing operation. In the process of the fracturing,the fracturing fluid flows through the spiral pipe section,the non-spiral section( including the vertical section and the horizontal section) and the annular fracturing section,these flows make the prediction of the fracturing pressure loss very complex and furthermore the field design data are somewhat different from the actual engineering practice. Based on the previous researches,taking Daqing coiled tubing fracturing data( 60. 3 mm outer diameter and 2. 769 mm thickness) as the example,the flow pressure drop was analyzed for the sand-lading fracturing fluid in the coiled-tubing fractured horizontal well. The results show that the spiral section of the coiled tubing is the most sensitive part for the pressure drop system and this sensitivity is enhanced with the increase of the discharge; there are the positive correlations between the pressure drop in the annular section and the discharge and annulus diameter; on the whole,the pressure drop increases with the rise of the volume fraction of the debris,but in the process there will be a short time of the reduction.
引文
[1]吕晓光,吴文旷,李国强,等.北美页岩气开发的关键技术[J].大庆石油地质与开发,2015,34(4):158-162.
    [2]李玮,李卓伦,杨斌,等.多分支缝水力压裂近井筒起裂机制研究[J].特种油气藏,2017,24(1):138-142.
    [3]李士斌,官兵,张立刚,等.水平井压裂裂缝局部应力场扰动规律[J].油气地质与采收率,2016,23(6):112-119.
    [4]王文军,张士诚.水平井压裂裂缝形态定量解释新方法[J].大庆石油地质与开发,2015,34(4):103-107.
    [5]赵广慧,梁政.连续油管内流体压力损失研究进展[J].钻采工艺,2008,31(6):41-44.
    [6]Berger S A,Talbot A L,Yao L S.Flow in curved pipes[J].Annual Review of Fluid Mechanics,1983,15(1):461-512.
    [7]Dean W R,Hurst J M.Note on the motion of fluid in a curved pipe[J].Mathematika,1959,6(1):77-85.
    [8]Zhou Y,Shah S N.Turbulent flow of non-newtonian fluid in coiled tubing:Numerical simulation and experimental verification[R].SPE-84123-MS,2003.
    [9]朱爱梅.水力喷射环空加砂压裂在薄互层水平井的应用[J].大庆石油地质与开发,2014,33(3):101-104.
    [10]王鹏,王凤山,张倩.压裂液流动压降及敏感性因素分析[J].长江大学学报(自然科学版),2016,13(11):60-64.
    [11]彭龙生,张羽.固体颗粒在螺旋管流中的分布特性[J].水力学报,2001,32(10):78-82.
    [12]李明勇,赵金洲,毛虎,等.水平井压裂携砂液摩阻定量计算模型研究[J].西南石油大学学报(自然科学版),2011,33(6),80-84.
    [13]Srinivasan P S,Nandapurkar S S,Holland F A.Friction factors for coils[J].Transactions of the Institution of Chemical Engineers,1970,48(1):156-161.
    [14]White C M.Streamline Flow through Curved Pipes[J].Proceedings of the Royal Society of London,1929,123(792):645-663.
    [15]Riley N.Unsteady fully-developed flow in a curved pipe[J].Journal of Engineering Mathematics,1998,34(1-2):131-141.
    [16]Zhou Y,Shah S N.Non-Newtonian fluid Flow in coiled tubing:Theoretical analysis and experimental verification[R].SPE-77708-MS,2002.
    [17]张晋凯,李根生,黄中伟,等.连续油管螺旋段摩阻压耗数值模拟[J].中国石油大学报(自然科学版),2012,36(2):115-119.
    [18]王克亮,崔海清,吴辅兵,等.螺旋管道内幂律流体流动数值模拟[J].石油学报,2005,26(4):93-96.
    [19]陈勋,闫铁,毕雪亮,等.连续油管管内摩擦压降计算模型与敏感性分析[J].石油钻采工艺,2014,36(5):13-17.
    [20]宋辉,张理,武兴勇,等.影响连续油管摩阻系数及压降因素分析[J].当代化工,2017,46(5):940-943.
    [21]王鹏,王凤山,张倩.环空加砂压裂管柱流体压降分析及现场应用[J].科学技术与工程,2016,16(13):178-181.
    [22]Gallego F,Shah S N.Friction pressure correlations for turbulent flow of drag reducing polymer solutions in straight and coiled tubing[J].Journal of Petroleum Science&Engineering,2009,65(3):147-161.
    [23]Zhou Y,Shah S N.New friction-factor correlations of non-newtonian fluid flow in coiled tubing[J].SPE Drilling&Completion,2006,21(1):68-76.
    [24]Hannah R R,Harrington L J,Lance L C.The real-time calculation of accurate bottom hole fracturing pressure from surface measurements using measured pressures as a base[R].SPE 12062,1983.
    [25]Keck R G,Nehmer W L,Strumolo G S.A new method for prediction friction pressure and rheology of proppant laden fracturing fluids[R].SPE Drilling&Completion,1992,7(1):21-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700