用户名: 密码: 验证码:
表面活性剂溶液与壁面纵向微沟槽协同减阻研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study of collaborative drag-reducing effect of surfactant solution and longitudinal microgroove channel
  • 作者:魏进家 ; 黄崇海 ; 宇波
  • 英文作者:WEI Jinjia;HUANG Chonghai;YU Bo;State Key Laboratory of Multiphase Flow in Power Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University;Beijing Institute of Petrochemical Technology;
  • 关键词:表面活性剂 ; 湍流 ; 微沟槽 ; 数值模拟 ; 协同减阻
  • 英文关键词:surfactants;;turbulent flow;;microgroove;;numerical simulation;;collaborative drag reduction
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:西安交通大学动力工程多相流国家重点实验室化学工程与技术学院;北京石油化工学院;
  • 出版日期:2017-11-28 13:46
  • 出版单位:化工学报
  • 年:2018
  • 期:v.69
  • 基金:国家自然科学基金项目(51225601);; 中央高校基本科研业务费(cxtd2017004)~~
  • 语种:中文;
  • 页:HGSZ201801043
  • 页数:12
  • CN:01
  • ISSN:11-1946/TQ
  • 分类号:480-490+542
摘要
采用直接数值模拟方法对表面活性剂溶液在不同尺寸宽肋矩形微沟槽通道内的湍流流动进行了数值模拟研究。结果表明表面活性剂溶液的减阻性能在合适尺寸的微沟槽通道内能进一步得到强化,同时微沟槽的最优减阻尺寸在表面活性剂溶液中也可以得到放大;表面活性剂溶液在微沟槽通道内的协同减阻强化效果是由微沟槽的"约束作用"和"尖峰作用"这两个主要因素相互博弈的结果。微沟槽尖峰处具有较高的剪切应力,槽谷内部剪切应力很小。当微沟槽能有效防止近壁湍流涡侵入槽谷内部,且又能对部分流向涡的展向运动起到较好的约束作用时,微沟槽将表现出减阻强化性能,反之则会出现增阻性能。微沟槽在槽谷内诱导的数量多、尺寸小且旋转强度弱的二次流向涡是其在表面活性剂溶液中能增大"约束作用"和发挥减阻强化性能的本质因素。
        A systematic study on the turbulent flow of surfactant solutions in different wide-rib rectangular microgroove channels was carried out by direct numerical simulation. The results showed that the drag reduction performance of surfactant solutions could be further enhanced in the grooved channel with a suitable groove size. The optimal size of microgroove for drag reduction could be enlarged in the surfactant solution. The collaborative drag reduction effect of surfactant solution in grooved channel was mainly the competition result of the "restriction effect" and the "tip effect" of the microgroove. There was a higher shear stress near the grooved tips, but the stress was very small within the grooved valley. If the microgroove not only prevents the near-wall vortices from intruding into the grooved valley effectively, but also presents a better restriction effect on the spanwise motions of the near-wall streamwise vortices, the microgroove will show a drag reduction enhancement effect. On the contrary, if the size of microgroove increases too large to prevent the near-wall vortices from intruding into the grooved valley, the shear stress near grooved tip and within grooved valley will increase, and the microgroove will show drag-increasing performance. The fact that a large number of small and weak secondary streamwise vortices induced in the grooved valley is the key factor to increase the restriction effect and thus enhance the drag reduction of surfactant solutions.
引文
[1]AL-WAHAIBI T,AL-WAHAIBI Y,AL-AJMI A,et al.Experimental investigation on the performance of drag reducing polymers through two pipe diameters in horizontal oil-water flows[J].Exp.Therm.Fluid Sci.,2013,50:139-146.
    [2]LI F C,KAWAGUCHI Y,HISHIDA K,et al.Investigation of turbulence structures in a drag-reduced turbulent channel flow with surfactant additive by stereoscopic particle image velocimetry[J].Exp.Fluids,2006,40(2):218-230.
    [3]QUINTAVALLA S J,ANGILELLA A J,SMITS A J.Drag reduction on grooved cylinders in the critical Reynolds number regime[J].Exp.Therm.Fluid Sci.,2013,48:15-18.
    [4]YANG S Q,LI S,TIAN H P,et al.Tomographic PIV investigation on coherent vortex structures over shark-skin-inspired drag-reducing riblets[J].Acta Mech.Sinica,2016,32(2):284-294.
    [5]TOMS B A.Some observation on the flow of linear polymer solutions through straight tubes at large Reynolds numbers[C]//Proc.1st Int.Cong.Rheol.Amsterdam,North Holland,1948:135-141.
    [6]MYSELS K J.Flow of thickened fluids:USA 2492173[P].1949-11-27.
    [7]BURGER E D,MUNK W R,WAHL H A.Flow increase in the Trans Alaska pipeline through use of a ploymeric drag-reducing additive[J].J.Pet.Tech.,1982,34(2):377-386.
    [8]OHLENDORF D,INTERTHAL W,HOFFMANN H.Surfactant systems for drag reduction:physico-chemical properties and rheological behaviour[J].Rheol.Acta,1986,25(5):468-486.
    [9]BEWERSDORFF H W,OHLENDORF D.The behaviour of drag-reducing cationic surfactant solutions[J].Colloid Polym.Sci.,1988,266(10):941-953.
    [10]DEBYE P,ANACKER E W.Micelle shape from dissymmetry measurements[J].J.Phys.Colloid Chem.,1951,55(5):644-655.
    [11]REHAGE H,WUNDERLICH I,HOFFMANN H.Shear induced phase transitions in dilute aqueous surfactant solutions[J].Chem.Mater.Sci.,1986,72:51-59.
    [12]KAWAGUCHI Y,SEGAWA T,FENG Z,et al.Experimental study on drag-reducing channel flow with surfactant additives––spatial structure of turbulence investigated by PIV system[J].Int.J.Heat Fluid Fl.,2002,23(5):700-709.
    [13]XU N,WEI J J,KAWAGUCHI Y.Rheology test on shear viscosity of surfactant solution:characteristic time,hysteresis phenomenon and fitting equation[J].Ind.Eng.Chem.Res.,2016,55(20):5817-5824.
    [14]XU N,WEI J J,KAWAGUCHI Y.Dynamic and energy analysis on the viscosity transitions with increasing temperature under shear for dilute CTAC surfactant solutions[J].Ind.Eng.Chem.Res.,2016,55(8):2279-2286.
    [15]XU N,WEI J J.Time-dependent shear-induced nonlinear viscosity effects in dilute CTAC/Na Sal solutions:mechanism analyses[J].Adv.Mech.Eng.,2014,6:1-8.
    [16]夏国栋,王敏,鹿院卫,等.表面活性剂添加对气液两相流摩阻压降特性的影响[J].化工学报,2004,55(5):727-731.XIA G D,WANG M,LU Y W,et al.Influences of surfactant on frictional pressure drop in gas-liquid flow[J].Journal of Chemical Industry and Engineering(China),2004,55(5):727-731.
    [17]WALSH M J.Drag characteristics of V-groove and transverse curvature riblets[M]//HOUGH G R.Viscous Flow Drag Reduction.New York:AIAA J.,1979:168-184.
    [18]WALSH M J.Turbulent boundary layer drag reduction using riblets[C]//20th Aerospace Sciences Meetings.Orlando:AIAA,1982:769-787.
    [19]WALSH M J,LINDEMANN A M.Optimization and application of riblets for turbulent drag reduction[C]//22nd Aerospace Sciences Meeting.Reno:AIAA,1984:1-10.
    [20]BECHERT D W,BARTENWERFER M,HOPPE G,et al.Drag reduction mechanisms derived from shark skin[C]//ICAS.Proc.15th Cong.London,England:AIAA,1986:1044-1068.
    [21]CHOI K S.Drag reduction mechanisms and near-wall turbulence structure with riblets[M]//ALBERT G.Structure of Turbulence and Drag Reduction.Berlin Heidelberg:Springer,1990:553-560.
    [22]KOURY E,VIRK P S.Drag reduction by polymer solutions in a riblet-lined pipe[J].Appl.Sci.Res.,1995,54(4):323-347.
    [23]CHAMORRO L P,ARNDT R E A,SOTIROPOULOS F.Drag reduction of large wind turbine blades through riblets:evaluation of riblet geometry and application strategies[J].Renew.Energ.,2013,50:1095-1105.
    [24]HUANG C,LIU D,WEI J.Experimental study on drag reduction performance of surfactant flow in longitudinal grooved channels[J].Chem.Eng.Sci.,2016,152:267-279.
    [25]HUANG C,WEI J.Experimental study on the collaborative drag reduction performance of a surfactant solution in grooved channels[J].Braz.J.Chem.Eng.,2017,34(1):159-170.
    [26]NG J H,JAIMAN R K,LIM T T.Direct numerical simulation of geometric effects on turbulent flows over riblets[C]//7th AIAA Flow Control Conference.Atlanta:AIAA,2014:1-25.
    [27]VAN DER VORST H A.Bi-CGSTAB:a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems[J].SIAM J.Sci.Stat.Comput.,1992,13(2):631-644.
    [28]YU B,KAWAGUCHI Y.Direct numerical simulation of viscoelastic drag-reducing flow:a faithful finite difference method[J].J.Non-Newton Fluid,2004,116(2/3):431-466.
    [29]GARCíA-MAYORAL R,JIMéNEZ J.Hydrodynamic stability and breakdown of the viscous regime over riblets[J].J.Fluid Mech.,2011,678(4):317-347.
    [30]CHEN Q,ZHONG Q,WANG X,et al.An improved swirling-strength criterion for identifying spanwise vortices in wall turbulence[J].J.Turbul.,2014,15(2):71-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700