用户名: 密码: 验证码:
连续油管水力压裂管内摩阻研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:RESEARCH PROGRESS OF THE FRICTION PRESSURE DROP IN THE HYDRAULIC FRACTURING COILED TUBING
  • 作者:王洪涛 ; 付璐 ; 孙士慧 ; 曲俊波
  • 英文作者:WANG Hongtao;FU Lu;SUN Shihui;QU Junbo;DOE Key Laboratory of Enhancing Oil-Gas Recovery of Northeast Petroleum University;Discipline Construction Department of Northeast Petroleum University;
  • 关键词:连续油管 ; 水力压裂 ; 摩阻压降 ; 支撑剂
  • 英文关键词:coiled tubing(CT);;hydraulic fracturing;;friction pressure drop;;proppant
  • 中文刊名:DQSK
  • 英文刊名:Petroleum Geology & Oilfield Development in Daqing
  • 机构:东北石油大学提高油气采收率教育部重点实验室;东北石油大学学科建设处;
  • 出版日期:2017-12-01
  • 出版单位:大庆石油地质与开发
  • 年:2017
  • 期:v.36;No.184
  • 基金:国家科技重大专项“钻井工程一体化软件”(2016ZX05020-006);; 国家自然科学基金面上项目“基于精细回压控制的地层-井筒多相流耦合机理研究”(51474073)
  • 语种:中文;
  • 页:DQSK201706018
  • 页数:4
  • CN:06
  • ISSN:23-1286/TE
  • 分类号:109-112
摘要
连续油管水力压裂摩阻是压裂设计中的重要内容,同时也是压裂能否成功的指标之一。连续油管水力压裂过程中,由于对流体性质、支撑剂、曲率效应等造成的复杂流动理解不足,使得准确预测管内摩阻非常困难,尤其在卷筒上的螺旋段,因而实验成为当前研究连续油管管内摩阻的重要手段。研究认为:在其他条件不变的情况下,摩阻随连续油管管径的增大急剧变小;随压裂液排量增大而增大;随连续油管下入深度的增加总摩阻变小;随黏度和流行指数的增大而增大;随支撑剂积分数增大摩阻先增大而后减少。
        The friction in the oiled tubing hydraulic fracturing is the important part of the fracturing design,and also the index to determine whether the fracturing is a success or not. In the process of the fracturing,because of the lack of the understandings of the complex flow caused by the fluid properties,the proppant,curvature effects,the accurate prediction of the friction in the tubing is rather difficult,especially in the spiral section,so the experiment has become the important tool to study the friction in the oiled tubing. The research achievements show that on the condition that the other parameters are invariant,the friction losses sharply with the increase of the coiled tubing diameter and increases with the rise of the discharge capacity of the fracturing liquid; the total fraction is also decreased with the increase of the run depth of the oiled tubing; the friction increases with the rise of the viscosity and flow behavior indices and first enhances and then decreases with the volumetric fraction of the proppant.
引文
[1]吕晓光,吴文旷,李国强,等.北美页岩气开发的关键技术[J].大庆石油地质与开发,2015,34(4):158-162.
    [2]李玮,李卓伦,杨斌,等.多分支缝水力压裂近井筒起裂机制研究[J].特种油气藏,2017,24(1):138-142.
    [3]李士斌,官兵,张立刚,等.水平井压裂裂缝局部应力场扰动规律[J].油气地质与采收率,2016,23(6):112-119.
    [4]朱爱梅.水力喷射环空加砂压裂在薄互层水平井的应用[J].大庆石油地质与开发,2014,33(3):101-104.
    [5]王文军,张士诚.水平井压裂裂缝形态定量解释新方法[J].大庆石油地质与开发,2015,34(4):103-107.
    [6]Dean W R.Note on the motion of fluid in a curved pipe[J].Mathematika,1959,6(1):77-85.
    [7]Adler M.Flow in curved pipes[J].Journal of Applied Mathematics and Mechanics,1934,14(5):257-275.
    [8]Soh W Y,Berger S A.Fully developed flow in a curved pipe of arbitrary curvature ratio[J].International Journal for Numerical Methods in Fluids,2010,7(7):733-755.
    [9]Mcconalogue D J,Srivastava R S.Motion of a fluid in a curved tube[J].Proceedings of the Royal Society A Mathematical Physical&Engineering Sciences,1968,307(1488):37-53.
    [10]Collins W M,Dennis S C R.The steady motion of a viscous fluid in a curved tube[J].Quarterly Journal of Mechanics&Applied Mathematics,1975,28(2):133-156
    [11]Berger S A,Talbot A L,Yao L S.Flow in curved pipes[J].Annual Review of Fluid Mechanics,2003,15(1):461-512.
    [12]Riley N.Unsteady fully-developed flow in a curved pipe[J].Journal of Engineering Mathematics,1998,34(1-2):131-141.
    [13]Zhou Y,Shah S N.Non-Newtonian fluid flow in coiled tubing:theoretical analysis and experimental verification[R].SPE-77708-MS,2002.
    [14]Zhou Y,Shah S N.Turbulent flow of non-Newtonian fluid in coiled tubing:numerical simulation and experimental verification[R].SPE-84123-MS,2003.
    [15]White C M.Streamline flow through curved pipes[J].Proceedings of the Royal Society of London,1929,123(792):645-663.
    [16]Srinivasan P S,Nandapurkar S S,Holland F A.Friction factors for coils[J].Trans Inst Chem Eng,1970,48(4-6):156-161.
    [17]Medjani B,Shah S N.A new approach for predicting frictional pressure losses of non-Newtonian fluids in coiled tubing[R].SPE-60319-MS,2000.
    [18]王克亮,崔海清,吴辅兵.螺旋管道内幂律流体流动数值模拟[J].石油学报,2005,26(4):93-96.
    [19]张晋凯,李根生,黄中伟,等.连续油管螺旋段摩阻圧耗数值模拟[J].中国石油大学学报(自然科学版),2012,36(2):115-119.
    [20]陈勋,闫铁,毕雪亮,等.连续油管管内摩擦系数压降计算模型与敏感性分析[J].石油钻采工艺,2014,36(5):13-17.
    [21]宋辉,张理,武兴勇,等.影响连续油管摩阻系数及压降因素分析[J].当代化工,2017,46(5):940-943.
    [22]Zhou Y,Shah S N.An experimental study of the effects of drilling solids on frictional pressure losses in coiled tubing[R].SPE-84123-MS,2003.
    [23]彭龙生,张羽,卢准炜,等.固体颗粒在螺旋管流中的分布特性[J].水力学报,2001,10(10):78-81.
    [24]Shah SN,Zhou Y,Naval G.Flow Behavior of Fracturing Slurries in Coiled Tubing[R].SPE-74811-MS,2002.
    [25]Hannah R R,Harrington L J,Lance L C.The real-time calculation of accurate bottomhole fracturing pressure from surface measurements using measured pressures as a base[R].SPE-12062-MS,1983.
    [26]Keck R G,Nehme W L,Strumolo G S.A new method for predicting friction pressures and rheology of proppant-laden fracturing fluids[J].SPE Production Engineering,1992,7(1):21-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700