用户名: 密码: 验证码:
大口径光学元件功率谱密度的拼接干涉检测
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Power Spectral Density Test of Large Aperture Optical Elements by Stitching Interferometry
  • 作者:刘昂 ; 何宇航 ; 李强 ; 高波 ; 石琦凯 ; 柴立群 ; 许乔
  • 英文作者:Liu Ang;He Yuhang;Li Qiang;Gao Bo;Shi Qikai;Chai Liqun;Xu Qiao;Research Center of Laser Fusion, China Academy of Engineering Physics;
  • 关键词:测量 ; 子孔径拼接 ; 相关匹配 ; 功率谱密度 ; 波前测量
  • 英文关键词:measurement;;subaperture stitching;;correlation match;;power spectral density;;wavefront measurement
  • 中文刊名:JJZZ
  • 英文刊名:Chinese Journal of Lasers
  • 机构:中国工程物理研究院激光聚变研究中心;
  • 出版日期:2018-11-23 10:15
  • 出版单位:中国激光
  • 年:2019
  • 期:v.46;No.506
  • 基金:国家自然科学基金(61505186);; 国家科技重大专项基金(2013ZX04006011-102);; 中国工程物理研究院超精密加工技术重点实验室开放基金(KF14007)
  • 语种:中文;
  • 页:JJZZ201902018
  • 页数:9
  • CN:02
  • ISSN:31-1339/TN
  • 分类号:139-147
摘要
为实现大口径光学元件波前功率谱密度(PSD)的高精度、低成本检测,提出了一种将干涉与拼接技术结合的检测方法。推导了波前PSD的计算方法,提出了基于相关匹配的子孔径拼接算法,分析了拼接干涉检测的误差来源。对拼接检测算法进行了仿真验证,结果表明,拼接检测的波前畸变峰谷值(d_(pv))与PSD的均方根值(P_(RMS))的相对偏差分别为1.2%和0.1%。采用口径为620 mm×450 mm光学元件开展了5次拼接检测实验,比较了拼接检测与全口径直接检测结果,两者分布一致,d_(pv)偏差不大于0.012λ(λ=632.8 nm),P_(RMS)偏差不大于0.03 nm,表明该算法稳定可靠,可实现大口径光学元件波前PSD的拼接检测。
        In order to realize high-precision and low-cost detection of wavefront power spectral density(PSD) of large aperture optical elements, a detection method combining the interference and splicing techniques is proposed. The method for calculting the wavefront PSD is deduced, and the subaperture stitching method is proposed based on the correlation match algorithm. Then the error sources in the stitching interferometry are analyzed. The simulation by the stitching method is performed and the results show that the relative deviations of the wavefront distortion peak-valley value(d_(pv)) and the root mean square value(P_(RMS)) of the PSD during the stitching detection are 1.2% and 0.1%, respectively. Five experiments with 620 mm×450 mm aperture elements are accomplished and the corresponding stitching results are compared with the direct test results of the full aperture elements. The distributions are consistent with each other. The deviation of d_(pv) is 0.012 λ(λ=632.8 nm) and that of P_(RMS) is 0.03 nm, which indicating the proposed mehtod is stable and reliable for the stiching test of wavefront PSD of large aperture optical elements.
引文
[1] Xu Q, Gu Y Y, Chai L, et al. Measurement of wavefront power spectral density of large optical components[J]. Acta Optica Sinica, 2001, 21(3): 344-347. 许乔, 顾元元, 柴林, 等. 大口径光学元件波前功率谱密度检测[J]. 光学学报, 2001, 21(3): 344-347.
    [2] Xu J C, Xu Q, Chai L Q. Statistical measurement of power spectrum density of large aperture optical component[J]. High Power Laser and Particle Beams, 2010, 22(8): 1905-1908. 徐建程, 许乔, 柴立群. 大口径光学元件功率谱密度的统计法测量[J]. 强激光与粒子束, 2010, 22(8): 1905-1908.
    [3] Yang X H, Shen W X, Zhang X J, et al. Comparison among different interferometers for measuring power spectral density of optical elements[J]. Chinese Journal of Lasers, 2016, 43(9): 0904002. 杨相会, 沈卫星, 张雪洁, 等. 不同干涉仪检测光学元件功率谱密度的比较[J]. 中国激光, 2016, 43(9): 0904002.
    [4] Kim C J. Polynomial fit of interferograms[J]. Applied Optics, 1982, 21(24): 4521-4525.
    [5] Kin C J, Wyant J C. Subaperture test of a large flat or a fast aspheric surface[J]. Journal of Optical Society of America, 1987, 71: 1587.
    [6] Chen Y W, Wang F, Wang G W, et al. New sub-aperture stitching algorithm based on transformation[J]. Acta Optica Sinica, 2013, 33(9): 0912004. 陈一巍, 王飞, 王高文, 等. 基于变换的子孔径拼接新算法[J]. 光学学报, 2013, 33(9): 0912004.
    [7] Wang X K, Wang L H, Zhang X J. Testing asphere by subaperture stitching interferometric method[J]. Optics and Precision Engineering, 2007, 15(2): 192-198. 王孝坤, 王丽辉, 张学军. 子孔径拼接干涉法检测非球面[J]. 光学精密工程, 2007, 15(2): 192-198.
    [8] Yan L S, Wang X K, Luo X, et al. Sub-aperture stitching interferometry based on non-ideal standard mirror[J]. Infrared and Laser Engineering, 2014, 43(1): 178-183. 闫力松, 王孝坤, 罗霄, 等. 基于非理想标准镜的子孔径拼接干涉检测技术研究[J]. 红外与激光工程, 2014, 43(1): 178-183.
    [9] Zhang M, Sui Y X, Yang H J. Mechanical error compensation algorithm for subaperture stitching interferometry[J]. Optics and Precision Engineering, 2015, 23(4): 934-940. 张敏, 隋永新, 杨怀江. 用于子孔径拼接干涉系统的机械误差补偿算法[J]. 光学精密工程, 2015, 23(4): 934-940.
    [10] Chai L Q, Xu J C, Xu Q. Modification of power spectrum density of wavefront after applying window[J]. High Power Laser and Particle Beams, 2005, 17(12): 1835-1838. 柴立群, 徐建程, 许乔. 加窗后波前功率谱密度的计算值修正[J]. 强激光与粒子束, 2005, 17(12): 1835-1838.
    [11] Chen S Y, Li S Y, Dai Y F, et al. Testing of large optical surfaces with subaperture stitching[J]. Applied Optics, 2007, 46(17): 3504-3509.
    [12] Maurer R, Schneider F, Vogt C, et al. Physical marker based stitching process of circular and non-circular interferograms[J]. Proceedings of SPIE, 2011, 8083: 80830Q.
    [13] Chen S Y, Zhao C Y, Dai Y F, et al. Stitching algorithm for subaperture test of convex aspheres with a test plate[J]. Optics & Laser Technology, 2013, 49: 307-315.
    [14] Zheng B, Lu P F, Chen Y H, et al. Co-phase error detection of segmented mirrors[J]. Acta Optica Sinica, 2017, 37(11): 1112002. 郑彬, 陆培芬, 陈永和, 等. 拼接式反射镜共相误差检测[J]. 光学学报, 2017, 37(11): 1112002.
    [15] Zhu P H, Tang F, Lu Y J, et al. Research on high accuracy sub-aperture stitching algorithm for flat optics[J]. Chinese Journal of Lasers, 2016, 43(11): 1104002. 朱鹏辉, 唐锋, 卢云君, 等. 高精度平面子孔径拼接算法研究[J]. 中国激光, 2016, 43(11): 1104002.
    [16] Otsubo M, Okada K, Tsujiuchi J. Measurement of large plane surface shapes by connecting small-aperture interferograms[J]. Optical Engineering, 1994, 33(2): 608-613.
    [17] Lu Y J, Tang F, Wang X Z, et al. Analysis on the accuracy of flat sub-aperture stitching interferometry[J]. Chinese Journal of Lasers, 2018, 45(4): 0404002. 卢云君, 唐锋, 王向朝, 等. 平面子孔径拼接干涉测量精度分析[J]. 中国激光, 2018, 45(4): 0404002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700