用户名: 密码: 验证码:
Cu-Cr-Y合金电滑动磨损性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electrical sliding wear resistance of Cu-Cr-Y alloy
  • 作者:谢明 ; 王松 ; 杨有才 ; 张吉明 ; 王塞北
  • 英文作者:Xie Ming;Wang Song;Yang Youcai;Zhang Jiming;Wang Saibei;State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum Metals,Kunming Institute of Precious Metals;
  • 关键词:Cu-Cr-Y合金 ; 电滑动磨损 ; 表面形貌 ; 磨损机理
  • 英文关键词:Cu-Cr-Y alloy;;electrical sliding wear;;surface morphology;;wear mechanism
  • 中文刊名:JSRC
  • 英文刊名:Heat Treatment of Metals
  • 机构:昆明贵金属研究所稀贵金属综合利用新技术国家重点实验室;
  • 出版日期:2013-09-25
  • 出版单位:金属热处理
  • 年:2013
  • 期:v.38;No.433
  • 基金:国家自然科学基金(51164015);; 云南省创新团队项目(2012HC027)
  • 语种:中文;
  • 页:JSRC201309026
  • 页数:4
  • CN:09
  • ISSN:11-1860/TG
  • 分类号:88-91
摘要
对喷射沉积、900℃×2 h固溶+470℃×2 h时效处理制备的Cu-0.8Cr-0.75Y合金拉拔成线材后,在自制电磨损试验机上进行电滑动磨损试验。采用电子天平与扫描电子显微镜等方法对Cu-Cr-Y合金电滑动磨损率、磨损表面形貌及电磨损机理进行了观察和分析。结果表明,随着加载电流的增大或滑动速度的增加,试验导线的磨损率逐渐增加。在未加载电流的情况下Cu-Cr-Y合金的滑动磨损机制以粘着磨损和磨粒磨损为主;在加载电流条件下,合金的磨损机制以粘着磨损、磨粒磨损和电侵蚀磨损为主。线材加工过程中产生的裂纹会加速磨损过程,使合金的耐磨性降低。
        Cu-0. 8Cr-0. 75Y alloy wires were prepared by spray deposition,900 ℃ × 2 h solid solution,470 ℃ × 2 h aging and cold drawing. The alloy wires were tested on self-made machine for electrical sliding wear test. Electrical sliding wear rate,worn surface morphology and wear mechanism of the alloy were studied by electronic balance and SEM. The results show that,with the load current or sliding speed increasing,the wear rate of the alloy increases gradually. The wear mechanism of the alloy is made up of adhesive wear and abrasive wear without current,while adhesive wear,abrasive wear and arc erosion wear would be the dominate mechanism under currents.The cracks initiated during working process will accelerate the wearing process and decrease the wear resistance of the alloy.
引文
[1]郭守晖,张萌,帅歌旺,等.不同热处理的Cu-0.8Cr-0.05Y合金形变时效行为[J].南昌大学学报(理科版),2006,30(5):470-472.
    [2]刘勇,刘平,李伟,等.Cu-Cr-Zr-Y合金时效析出行为研究[J].功能材料,2005,36(3):377-379.
    [3]刘勇,刘平,董企铭,等.变形量对接触线用Cu-Cr-Zr-Y合金时效特性和力学性能的影响[J].中国有色金属学报,2006,16(3):417-421.
    [4]Li Huaqing,Xie Shuisheng,Mi Xujun,et al.Influence of cerium and yttrium on Cu-Cr-Zr alloys[J].Journal of Rare Earth,2006,24(2):367-371.
    [5]黄金亮,叶权华,刘平,等.用导电率研究Cu-Cr-Zr-Y合金的相变动力学[J].材料热处理学报,2006,27(2):132-136.
    [6]张学军,牛焱,吴维,等.Cu-20Ni-30Cr合金在700℃和800℃纯氧气中的氧化[J].稀有金属材料与工程,2005,34(8):1271-1274.
    [7]叶权华,刘平,刘勇,等.Cr含量对Cu-Cr-Zr-Y合金时效性能的影响[J].特种铸造及有色合金,2006,26(4):202-204.
    [8]Chen Xiao-fang,Zhang Meng,Yin Jian-ying,et al.Effect of Lanthanum and Yttrium on microstructures of Cu-Cr alloys[J].材料热处理学报,2004,25(5):56-60.
    [9]李伟,刘平,刘勇,等.微量稀土元素对Cu-Cr-Zr合金接触线抗软化性能的影响[J].金属热处理,2005,30(2):38-40.
    [10]周珺.Cu-Cr-RE合金的冷变形及时效特性研究[J].兵器材料科学与工程,2008,31(6):79-83.
    [11]俞小青,彭光怀,胡珊玲,等.Cu-0.8Cr-xNd(Y)合金耐磨性研究[J].中国稀土学报,2008,26(5):588-591.
    [12]Xie Haofeng,Mi Xujun,Huang Guojie,et al.Effect of thermomechanical treatment on microstructure and properties of Cu-Cr-Zr-Ag alloy[J].Rare Metals,2011,30(6):650-656.
    [13]Dadras M M,Morris D G.Examination of some high-strength,highconductivity copper alloys for high temperature applications[J].Scripta Materialia,1998,38(2):199-205.
    [14]王志强,钟云波,饶显君,等.Cu-Cr-Zr合金在施加直流电流时效后的电性能和力学性能[J].中国有色金属学报,2012,22(5):1106-1111.
    [15]刘平,刘勇,田保红,等.Cu-Cr-Zr合金电滑动磨损行为研究[J].金属热处理,2006,31(3):85-87.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700