用户名: 密码: 验证码:
近海环境下耐久性损伤刚构桥墩时变抗震性能分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Time varying seismic performance evaluation of durability damage rigid frame bridge in offshore environment
  • 作者:梁岩 ; 任超 ; 牛欢 ; 李杰
  • 英文作者:LIANG Yan;REN Chao;NIU Huan;LI Jie;School of Civil Engineering, Zhengzhou University;
  • 关键词:氯离子侵蚀 ; 桥墩 ; 抗震性能 ; 滞回曲线
  • 英文关键词:chloride ion erosion;;pier;;seismic performance;;hysteretic curve
  • 中文刊名:CSTD
  • 英文刊名:Journal of Railway Science and Engineering
  • 机构:郑州大学土木工程学院;
  • 出版日期:2019-04-15
  • 出版单位:铁道科学与工程学报
  • 年:2019
  • 期:v.16;No.109
  • 基金:国家自然科学基金资助项目(51608488)
  • 语种:中文;
  • 页:CSTD201904018
  • 页数:8
  • CN:04
  • ISSN:43-1423/U
  • 分类号:140-147
摘要
基于OpenSees平台,以全寿命周期内某近海刚构桥桥墩为例,考虑刚构桥墩墩顶约束条件,进行非线性时程分析,通过截面弯矩—曲率曲线分析氯离子侵蚀对桥墩抗震性能的影响。随着服役期延长桥墩耐久性损伤程度增大,材料力学性能不断退化,当服役期达到67a时,保护层开裂;桥墩中仅箍筋发生锈蚀时,氯离子侵蚀对桥墩承载力和延性影响较小;当纵筋发生锈蚀后,墩顶最大位移随服役期的延长而增大,抗震性能明显降低。本文研究成果可为桥梁全寿命周期内抗震性能设计提供技术参考。
        In this paper, we took an offshore rigid frame bridge pier as an example in the whole life cycle,considering the constraint conditions at the top of pier to do the nonlinear time history analysis based on the OpenSees, and analyzed the influence of chloride ion erosion on the seismic behavior of pier by the section moment curvature curve. The degree of damage of pier increases, and the mechanical properties of materials deteriorate with the extension of service period, and the protective layer cracks when the service period reaches 67 years; if only the stirrups in the pier are corroded, the chloride ion erosion has little effect on the capacity and ductility of the pier; when the longitudinal rebar are corroded, the maximum displacement at the top of the pier increases and the seismic performance decreases obviously with the extension of service period. The results in this paper can provide technical reference for the seismic design of bridges in the whole life cycle.
引文
[1]成虎,李宏男,王东升,等.考虑锈蚀黏结退化的钢筋混凝土桥墩抗震性能分析[J].工程力学,2017,34(12):48-58.CHEN Hu,LI Hongnan,WANG Dongsheng,et al.Seismic performance analysis of reinforce concrete bridge column considering bond deterioration caused by chloride ion induced corrosion[J].Engineering Mechanics,2017,34(12):48-58.
    [2]赵桂峰,何双,马玉宏,等.基于钢筋坑蚀效应的近海隔震桥梁易损性分析[J].中国公路学报,2016,29(8):67-76.ZHAO Guifeng,HE Shuang,MA Yuhong,et al.Fragility analysis of offshore isolated bridge based on steel pitting corrosion effect[J].China Journal of Highway and Transport,2016,29(8):67-76.
    [3]乔巍,姬永生,张博雅,等.海洋潮汐区混凝土中氯离子传输过程的试验室模拟方法[J].四川建筑科学研究,2012,38(3):224-229.QIAO Wei,JI Yongsheng,ZHANG Boya,et al.An accelerated simulation experimental method of transport process of chloride in concrete exposed to splash from seawater[J].Sichuan Building Science,2012,38(3):224-229.
    [4]GUO A,YUAN W,LAN C,et al.Time-dependent seismic demand and fragility of deteriorating bridges for their residual service life[J].Bulletin of Earthquake Engineering,2015,13(8):2389-2409.
    [5]李立峰,吴文朋,胡思聪,等.考虑氯离子侵蚀的高墩桥梁时变地震易损性分析[J].工程力学,2016,33(1):163-170.LI Lifeng,WU Wenpeng,HU Sicong,et al.Timedependent seismic fragility analysis of high pier bridge based on chloride ion induced corrosion[J].Engineering Mechanics,2016,33(1):163-170.
    [6]Akiyama M,Frangopol D M,Matsuzaki H.Life-cycle reliability of RC bridge piers under seismic and airborne chloride hazards[J].Earthquake Engineering and Structural Dynamics,2011,40(5):1671-1687.
    [7]朱杰.受腐蚀钢筋混凝土墩柱的性能退化研究[D].上海:上海交通大学,2013.ZHU Jie.Degradation of capacity of the corroded reinforced concrete columns[D].Shanghai:Shanghai Jiaotong University,2013.
    [8]YANG S Y,SONG X B,JIA H X,et al.Experimental research on hysteretic behaviors of corroded reinforced concrete columns with different maximum amounts of corrosion of rebar[J].Construction and Building Materials,2016,121:319-327.
    [9]Alipour A,Shafei B,Shinozuka M.Performance evaluation of deteriorating highway bridges located in high seismic areas[J].Journal of Bridge Engineering,2011,16(5):597-611.
    [10]Carnot A,Frateur I,Zanna S,et al.Corrosion mechanisms of steel concrete moulds in contract with a demoulding agent studied by EIS and XPS[J].Corrosion Science,2003,45(11):2513-2524.
    [11]Simon J,Bracci J M,Gardoni P.Seismic response and fragility of deteriorated reinforced concrete bridges[J].Journal of Structural Engineering,2010,136(10):1273-1281.
    [12]Choe D E,Gardoni P,Rosowsky D,et al.Probabilistic capacity models and seismic fragility estimates for RCcolumns subject to corrosion[J].Reliability Engineering System Safety,2008,93(3):383-393.
    [13]李超,李宏男.考虑氯离子腐蚀作用的近海桥梁结构全寿命抗震性能评价[J].振动与冲击,2014,33(11):70-77.LI Chao,LI Hongnan.Life-cycle aseismic performance evaluation of offshore bridge structures considering chloride ions corrosion effect[J].Journal of Vibration and Shock,2014,33(11):70-77.
    [14]柳春光,任文静,夏春旭.考虑钢筋腐蚀的近海隔震桥梁地震易损性分析[J].自然灾害学报,2016,25(6):120-129.LIU Chunguang,REN Wenjing,XIA Chunxu.Vulnerability analysis of offshore isolation bridges considering reinforcement corrosion[J].Journal of Natural Disasters,2016,25(6):120-129.
    [15]李宏男,张宇,李钢.考虑氯离子腐蚀作用的近海桥梁结构地震反应分析[J].土木工程学报,2015,48(7):112-122.LI Hongnan,ZHANG Yu,LI Gang.Nonlinear seismic analysis of offshore bridges considering chloride ions corrosion effect[J].China Civil Engineering Journal,2015,48(7):112-122.
    [16]LIU Y,Weyers R E.Modeling the time to corrosion cracking in chloride contaminated reinforced concrete structures[J].ACI Materials Journal,1998,95(6):675-681.
    [17]DU Y G,Clark L A,CHAN A H C.Residual capacity of corroded reinforcing bars[J].Magazine of Concrete Research,2005,57(3):135-147.
    [18]Violetta B.Life-365 service life prediction model[J].Concrete International,2002,24(12):53-57.
    [19]Val D V,Pavel A T.Probabilistic evaluation of initiation time of chloride-induced corrosion[J].Reliability Engineering System Safety,2008,93(3):364-372.
    [20]Vidal T,Castel A,Francois R.Analyzing crack width to predict corrosion in reinforced concrete[J].Cement and Concrete Research,2004,34(1):165-174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700