用户名: 密码: 验证码:
肃北蒙古族自治县黑山梁钨钼矿床地球化学特征及来源示踪
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Geochemistry and source tracing of Heishanliang W-Mo deposit in Subei County
  • 作者:杜丁丁 ; 徐荣海 ; 叶生霞 ; 张成君 ; 魏海峰
  • 英文作者:Du Ding-ding;Xu Rong-hai;Ye Sheng-xia;Zhang Cheng-jun;Wei Hai-feng;Key Laboratory of Western China's Mineral Resources of Gansu Province, School of Geological Sciences and Mineral Resources, Lanzhou University;Gansu Geology Survey;
  • 关键词:流体包裹体 ; 氧、硫同位素 ; 成矿机制 ; 黑山梁钨钼矿
  • 英文关键词:fluid inclusion;;O,S isotope;;metallogenic mechanism;;Heishanliang W-Mo deposit
  • 中文刊名:LDZK
  • 英文刊名:Journal of Lanzhou University(Natural Sciences)
  • 机构:兰州大学地质科学与矿产资源学院甘肃省西部矿产资源重点实验室;甘肃省地质调查院;
  • 出版日期:2018-02-15
  • 出版单位:兰州大学学报(自然科学版)
  • 年:2018
  • 期:v.54;No.235
  • 基金:国家自然科学基金项目(41173015,41571177);; 中央高校基本科研业务费专项资金项目(223000862457)
  • 语种:中文;
  • 页:LDZK201801011
  • 页数:7
  • CN:01
  • ISSN:62-1075/N
  • 分类号:72-78
摘要
从早期到晚期黑山梁钨钼矿石英脉型矿床,均一温度逐渐降低,盐度逐渐降低,密度逐渐上升.矿床的成矿深度为2.63~3.54 km.激光拉曼光谱分析显示,黑山梁石英脉型钨钼矿床的成矿流体属于CO_2-H_2O-NaCl(SO_4~(2-))体系.氧同位素研究显示成矿流体具岩浆水特征.金属硫化物中硫同位素表明成矿热液中硫的来源主要是幔源硫或岩浆硫.引起矿质沉淀的主要原因是流体混合导致温度、压力下降等环境条件的改变,以及水的加入.黑山梁石英脉型钨钼矿床的初始成矿流体可能来自于岩浆分异热液,随着成矿作用的进行,天水热液的掺入比例显著增大,具岩浆水特征.
        The Heishanliang medium type W-Mo deposit is a porphyry-skarn-quartz vein deposit associated with granitoids. It's homogenization temperatures gradually decreased from early to late stage of ore formation, while its density gradually was increasing. The salinities(NaCl) gradually decreased from early to late period. It is also demonstrated that the mineralization depth of the deposit is about 2.63-3.54 km. The ore-forming fluid belongs to CO_2-H_2O-NaCl(SO_4~(2-)) system. The composition changed during the metallogenic stage, as indicated by laser Raman composition analysis. The ore-forming fluid originated from magma and later mixed with the meteoric water, indicated by the isotopic composition of O isotopes from the quartz veins of all stages and S isotopes from sulfides. During the formation of mineral deposit, its temperature and pressure dropped, as it was mixed with meteoric water due to fluid mixing.The initial ore-forming fluids were sourced from the magmatic fluid and mixed with the meteoric water in a later process.
引文
[1]刘引霞.世界钨矿床资源研究[J].甘肃科技,2008,24(21):112-113.
    [2]牛鹏飞.桂东北牛塘界钨矿地质地球化学特征研究[D].桂林:桂林理工大学地质调查研究院,2013.
    [3]黄凡,王登红,陈毓川,等.中国钼矿中辉钼矿的稀土元素地球化学及其应用[J].中国地质,2013,40(1):287-301.
    [4]王明燕,贾木欣,肖仪武,等,中国钨矿资源现状及可持续发展对策[J].有色金属工程,2014,4(2):76-80.
    [5]陈伟军.内蒙古鸡冠山钼矿流纹斑岩的成岩年龄及地质意义[J].地质与勘探,2015,51(6):1107-1113.
    [6]黄典豪,侯增谦,杨志明,等.东秦岭钼矿带内碳酸岩脉型钼(铅)矿床地质-地球化学特征、成矿机制及成矿构造背景[J].地质学报,2009,83(12):1968-1984.
    [7]王刚.建昌八家子钼矿控矿因素及找矿前景研究[D].辽宁:辽宁工程技术大学地质调查研究院,2011.
    [8]陈欢.河北涞源大湾钼矿成矿类型特征及找矿标志[D].长安:长安大学地球科学与资源学院,2012.
    [9]魏海峰,王怀涛.甘肃省肃北县黑山梁钨钼矿床地质特征及成因探讨[J].甘肃地质,2016,25(1):19-24.
    [10]杨合群,李英,李文明.北山成矿构造背景概论[J].西北地质,2008,41(1):22-28.
    [11]吴胜华,刘家军,柳振江,等.陕西石梯钡矿床中流体包裹体特征及成因意义[J].中国地质,2010,37(5):1469-1479.
    [12]刘军.黑龙江省岔路口斑岩钼矿床流体包裹体和稳定同位素特征[J].中国地质,2013,40(4):1231-1251.
    [13]刘斌.利用不混溶流体包裹体作为地质温度计和压力计[J].科学通报,1986,31(18):1432-1436.
    [14]邵洁莲.金矿找矿矿物学[M].北京:中国地质大学出版社,1990.
    [15]Hoefs J.Stable isotope geochemistry[M].Heidelberg:Springer-Verlag,2009:48-54.
    [16]韩吟文,马振东,张宏飞,等.地球化学[M].北京:中国人民大学出版社,2003:246-254.
    [17]Ohmoto H,Goldhaber M B.Sulfur and carbon isotopes[C]//Barnes H L.Geochemistry of hydrothermal ore deposits.The 3rd Edition.New York:John Wiley and Wons,1997:517-611.
    [18]张理刚.稳定同位素在地质科学中的应用:金属活化热液成矿作用及找矿[M].西安:陕西科学技术出版社,1985.
    [19]冯志文,夏卫华,章锦统,等.江西黄沙脉钨矿床特征及成矿流体性质讨论[J].地球科学,1989,14(4):423-432.
    [20]庄龙池,林伟圣,谢廷焕.大吉山钨矿的稳定同位素地球化学[C]//中国地质科学院宜昌地质矿产研究所文集.北京:地质出版社,1991:109-120.
    [21]Landis G P,Rye R.Geologic,fluid inclusion,and stable isotope studies of the Pasto Buena tungsten-base metal ore deposit,northern Peru[J].Economic Geology,1974,69(7):1025-1059.
    [22]So C S,Rye D M,Shelton K L.Carbon,hydrogen,oxygen,and sulfur isotope and fluid inclusion study of the Weolag tungsten-molybdenum deposit,Republic of Korea:fluid histories of metamorphic and ore-forming events[J].Economic Geology,1983,78(8):1551-1573.
    [23]祝新友,王京彬,王艳丽,等.论石英脉型与矽卡岩型钨矿床成矿流体的差异性[J].岩石学报,2015,31(4):941-952.
    [24]卢焕章,范宏瑞,倪培.流体包裹体[M].北京:科学出版社,2004.
    [25]石英霞,李诺,杨艳.河南省栾川县三道庄钼钨矿床地质和流体包裹体研究[J].岩石学报,2009,25(10):2575-2587.
    [26]张亚辉.滇东南薄竹山晚燕山期酸性岩浆热液成矿作用研究[D].昆明:昆明理工大学矿产资源研究所,2013.
    [27]Tingle T N,Fenn P M.Transport and concentration of molybdenum in granite molybdenite systems:effects of fluorine and sulfur[J].Geology,1984,12(3):156-158.
    [28]Rempel K U,Williams A E,Migdisov A A.The partitioning of molybdenum(VI)between aqueous liquid and vapour at temperatures up to 370℃[J].Geochimica et Cosmochimica Acta,2009,73(11):3381-3392.
    [29]张德会.关于成矿流体地球化学研究的几个问题[J].地质地球化学,1997,12(3):49-57.
    [30]张德会.流体的沸腾和混合在热液成矿中的意义[J].地球科学进展,1997,12(6):546-552.
    [31]Canet C,Franco S I,Prol R M,et al.A model of boiling for fluid inclusion studies:application to the Bolanos Ag-Au-Pb-Zn epithermal deposit,Western Mexico[J].Journal of Geochemical Exploration,2011,110(2):118-125.
    [32]Dupont A,vander Auwera J,Pin C,et al.Trace element and isotope(Sr,Nd)geochemistry of porphyry-and skarnmineralising late Cretaceous intrusions from Banat,western South Carpathians,Romania[J].Mineralium Deposita,2002,37(6):568-586.
    [33]芮宗瑶,李荫清,王龙生.从流体包裹体研究探讨金属矿床成矿条件[J].矿床地质,2003,22(1):13-23.
    [34]Robb L.Introduction to ore-forming processes[M].Oxford:Blackwell Publishing,2005:41(7):735-736.
    [35]卢焕章.流体不混溶性和流体包裹体[J].岩石学报,2011,27(5):1253-1261.
    [36]赵一鸣,林文蔚,毕承思.中国矽卡岩矿床[M].北京:地质出版社,2012.
    [37]龚庆杰,於崇文,岑况,等.超临界流体中MoO_3与WO_3溶解度实验探讨[J].岩石学报,2005,21(1):240-244.
    [38]陈欢.河北涞源大湾钼矿成矿类型特征及找矿标志[D].长安:长安大学地球科学与资源学院,2012.
    [39]王蝶,卢焕章,毕献武.与花岗质岩浆系统有关的石英脉型钨矿和斑岩型铜矿成矿流体特征比较[J].地学前缘,2011,18(5):121-131.
    [40]胡万龙,侯荣娜,张铖,等.中祁连西段玄武玢岩地球化学特征及其构造意义[J].兰州大学学报:自然科学版,2016,52(3):287-294.
    [41]侯克选,沙鑫,何兆祥,等.北祁连西段卡瓦矿区熬油沟组玄武岩地球化学特征及其地质意义[J].兰州大学学报:自然科学版,2016,52(2):283-284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700