用户名: 密码: 验证码:
成光学移相干涉仪的研制与性能表征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Manufacturing and characterization of integrated optical phase-shift interferometer
  • 作者:郝寅雷 ; 丁君珂 ; 陈浩 ; 蒋建光 ; 孟浩然 ; 刘欣悦
  • 英文作者:Hao Yinlei;Ding Junke;Chen Hao;Jiang Jianguang;Meng Haoran;Liu Xinyue;College of Information Science & Electronic Engineering, Zhejiang University;Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences;
  • 关键词:移相干涉仪 ; 综合孔径望远镜 ; 成光 ; 光波导
  • 英文关键词:phase-shift interferometer;;aperture synthesis telescope;;integrated optics;;optical waveguide
  • 中文刊名:HWYJ
  • 英文刊名:Infrared and Laser Engineering
  • 机构:浙江大学信息与电子工程学院;中国科学院长春光学精密机械与物理研究所;
  • 出版日期:2018-12-27 16:07
  • 出版单位:红外与激光工程
  • 年:2019
  • 期:v.48;No.294
  • 基金:浙江省自然科学基金(LY17F050007);; 深圳市科技计划项目(JCYJ20170816172409618)
  • 语种:中文;
  • 页:HWYJ201904032
  • 页数:5
  • CN:04
  • ISSN:12-1261/TN
  • 分类号:224-228
摘要
干涉仪是综孔径望远镜的核心器件,与传统的分立元件干涉仪相比,集成光学移相干涉仪结构紧凑,用于构建综合孔径望远镜能显著优化望远镜结构并提高系统稳定性。文中报道了二氧化硅基集成光学移相干涉仪的设计和制作,并给出了对这种器件主要性能的表征结果。研究结果表明,集成光波导制作技术可以保证干涉仪芯片上两个方向耦合器的耦合特性的一致性;器件的插入损耗优于1.8 dB,插入损耗均匀性优于0.1 dB;通过对MZ干涉仪插入损耗的测量估计了移相器的偏差,结果显示干涉仪中90°移相器的偏差大约为1.5°。分析表明,二氧化硅基光波导技术用于综合孔径望远镜用光干涉仪制作具有显著的优势。
        Optical interferometers are key devices in constructing aperture synthesis telescope. Compared with optical interferometers implemented with conventional discrete elements, integrated optical phase-shift interferometers possess ultra-compact structure, and thus can be applied in aperture synthesis telescope to optimize its structure and improve its stability as well. Silica based integrated optical phase-shift interferometer was studied, in aspects of its design, fabrication, as well as its characterization.Results show that the two direction couplers in interferometer chip possess well consistency in terms of their coupling efficiency, thanks to integrated optical waveguide technology itself. Excess loss of interferometer chip was measured to be as low as 1.8 d B, with uniformity of 0.1 dB. Phase shift error was estimated by measuring MZ interferometers, and results exhibit that error of 90 ° phase shifter is approximately 1.5 °. Analysis show that silica based waveguide technology is promising in fabrication of optical phase-shift interferometers utilized in aperture synthesis telescope.
引文
[1] Li Jian feng, W u Xiaoxia, Shao Liang. Study on active support for large SiC primary mirror and force actualtor design[J]. Infrared and Laser Engineering, 2016, 45(7):0718003.(in Chinese)
    [2] Chen Hongda, Chen Yonghe, Shi Tingting, et al.Lightweight and mounting design for primary mirror in space camera[J]. Infrared and Laser Engineering,2014, 43(2):535-540.(in Chinese)
    [3] Li Hongzhuang, Zhang Jingxu, Zhang Zhenduo, et al.Correction experiment of 620 mm thin mirror active optics telescope[J]. Infrared and Laser Engineering,2014, 43(1):166-172.(in Chinese)
    [4] Cunningham C. Future optical technologies for telescopes[J]. Nature Photonics, 2009, 3(5):239.
    [5] Zhang Xuejun, Fan Yanchao, Bao He, et al.Applications and development of ultra large aperture space optical remote sensors[J]. Optics and Precision Engineering, 2016, 24(11):2613-2626.(in Chinese)
    [6] Gao Lili, Liu Zhong, Jin Zhenyu. High resolution reconstruction of images from an interferometry telescope[J]. Astronomical Research and Technology,2009, 6(4):327-33.(in Chinese)
    [7] Wang Mengbi, Zhang Gaofei, You Zheng, et al. Optical properties of space-based synthetic aperture systems[J]. Journal of Tsinghua University(Science and Technology), 2014, 54(10):276-1281.(in Chinese)
    [8] Li Chun, Mu Zonggao, Zhou Chenghao, et al. Research on optical synthetic aperture sensing system based on microsatellites[J]. Space Electronic Technology, 2016,2:26-30.(in Chinese)
    [9] Joss Bland-Hawthorn, Pierre Kern. Astrophotonics:a new era for astronomical instruments[J]. Optics Express, 2009, 17(3):1880-1884.
    [10] Bartko H, Perrin G, Brandner W, et al. GRAVITY:Astrometry on the galactic center and beyond[J]. New Astronomy Reviews, 2009, 53(11):301-306.
    [11] Benisty M, Berger J P, Jocou L, et al. An integrated optics beam combiner for the second generation VLTI instruments[J]. Astronomy&Astrophysics, 2009, 498(2):601-613.
    [12] Monnier J D, Traub W A, Schloerb F P, et al. First results with the IOTA3 imaging interferometer:the spectroscopic binaries virgins and WR 140[J]. The Astrophysical Journal Letters, 2004, 602(1):L57.
    [13] Su T, Scott R P, Ogden C, et al. Experimental demonstration of interferometric imaging using photonic integrated circuits[J]. Optics Express, 2017,25(11):12653-12665.
    [14] Chu Q, Shen Y, Yuan M, et al. Numerical simulation and optimal design of segmented planar imaging detector for electro-optical reconnaissance[J]. Optics Communications, 2017, 405:288-296.
    [15] Liu G, Wen D, Song Z. Rearranging the lenslet array of the compact passive interference imaging system with high resolution[C]//AOPC 2017:Space Optics and Earth Imaging and Space Navigation. International Society for Optics and Photonics, 2017, 10463:1046310.
    [16] Zhu Z, Qiu M. Phase retrieval for interferometry imaging from microlens array[C]//Young Scientists Forum 2017. International Society for Optics and Photonics, 2018, 10710:1071028.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700