用户名: 密码: 验证码:
深海环境模拟实验装置及压力动态控制技术
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experiment devices for simulating a deep-sea environment and dynamic pressure control technology
  • 作者:张强 ; 张雷励 ; 张铭钧
  • 英文作者:ZHANG Qiang;ZHANG Leili;ZHANG Mingjun;College of Mechanical and Electrical Engineering,Harbin Engineering University;
  • 关键词:深海环境 ; 串联液压缸 ; 油水转换 ; 压力动态控制模块 ; 相位补偿算法 ; 压力快速补偿方法 ; 液压系统
  • 英文关键词:deep sea environment;;series hydraulic cylinder;;oil and water conversion;;dynamic pressure control module;;phase compensation algorithm;;fast pressurecompensation method;;hydraulic system
  • 中文刊名:HEBG
  • 英文刊名:Journal of Harbin Engineering University
  • 机构:哈尔滨工程大学机电工程学院;
  • 出版日期:2016-12-01 14:40
  • 出版单位:哈尔滨工程大学学报
  • 年:2016
  • 期:v.37;No.241
  • 基金:国防基础科研资助项目(B2420133003)
  • 语种:中文;
  • 页:HEBG201611018
  • 页数:8
  • CN:11
  • ISSN:23-1390/U
  • 分类号:103-110
摘要
为了模拟深海环境压力,研制了一套模拟压力可以大范围连续变化的实验装置,并研究了其压力动态控制技术。提出了在液压回路中串联液压缸的方法解决电液比例阀使用水介质的局限性问题;针对压力动态控制模块固有滞后特性的问题,提出了相位补偿算法予以解决;针对实验试件爆破时造成装置内压力突降而无法快速恢复到目标值的问题,提出了基于气体式蓄能器的压力快速补偿方法予以解决。通过对模拟实验装置进行相关实验研究,验证了本文研究的压力动态控制技术、压力快速补偿技术的可行性和有效性。
        In this paper,we develop a set of deep-sea environment simulation experiment devices with a large continual change scope of simulative pressureto simulate the pressureof a deep-sea environment. The dynamic pressure control technology isalso investigated. The method of connecting hydraulic cylinders in series in a hydraulic circuit is proposed to solve the boundedness that electro-hydraulic proportional valve uses a water medium. The phase compensation algorithm is proposed in view of the inherent hysteresis of the dynamic pressure control module. The fast pressure compensation method based on the gas accumulatoris proposed considering the fact that the system pressure cannot rapidly return to the target value caused by the test-pieceexplosion. The feasibility and effectiveness of the dynamic pressure control technology and the fast pressure compensation technology are verified by the experimental study of the simulation devices.
引文
[1]孙小辉,李维嘉,曹和云.基于模糊PID的压力筒动态保压系统[J].中国舰船研究,2014,9(1):127-131.SUN Xiaohui,LI Weijia,CAO Heyun.A dynamic pressure packing system based on fuzzy PID[J].Chinese journal of ship research,2014,9(1):127-131.
    [2]DUNN P M.The navy unmanned undersea vehicle master plan[J].Naval undersea warfare center,2006,15-23.
    [3]李维嘉,李绍安,罗兴桂.高精度压力筒试验系统[J].中国造船,2008,49(1):72-76.LI Weijia,LI Shao'an,LUO Xinggui.The pressure vessel experiment system with high precision[J].Shipbuilding of China,2008,49(1):72-76.
    [4]谭宗柒,戴浩林,汪云峰.基于AMESim的深度模拟器液压系统设计与仿真[J].机床与液压,2009,37(2):150-152,200.TAN Zongqi,DAI Haolin,WANG Yunfeng.Design and simulation of hydraulic depth simulator based on AMESim[J].Machine tool&hydraulics,2009,37(2):150-152,200.
    [5]李天.深海压力环境模拟试验装置及其恒压控制系统研究[D].哈尔滨:哈尔滨工程大学,2013:40-50.LI Tian.Research on the deep-sea pressure environmental simulation test device and its constant pressure control system[D].Harbin:Harbin Engineering University,2013:40-50.
    [6]CHO D O,WHITCOMB M A.A review of the ocean science and technology partnership between US and Korea[J].Marine policy,2008,32(3):502-513.
    [7]李浪,王海涛,龚烈航.皮囊式蓄能器吸收压力脉动的参数分析与试验[J].液压与气动,2012(7):3-6.LI Lang,WANG Haitao,GONG Liehang.The parameter analysis and experiment of the bladder accumulator absorbing pressure pulsation[J].Chinese hydraulics&pneumatics,2012(7):3-6.
    [8]吕少力.波义耳定律在液压缸加载系统中的应用[J].液压与气动,2010(11):63-64.LYU Shaoli.Application of boyle's law in loading system of hydraulic cylinder[J].Chinese hydraulics&pneumatics,2010(11):63-64.
    [9]OHISHI K,NAKAO M,OHNISHI K,et al.Microprocessorcontrolled DC motor for load-insensitive position servo system[J].IEEE transactions on industrial electronics,1987,IE-34(1):44-49.
    [10]柳俊忻,马彪,李和言,等.基于吸收压力冲击的蓄能器参数设计及其仿真研究[J].车辆与动力技术,2009(2):6-11.LIU Junxin,MA Biao,LI Heyan,et al.Study on parameters design and hydraulic shock reduction of hydraulic accumulator for hydrostatic transmission system[J].Vehicle&power technology,2009(2):6-11.
    [11]马登成,杨士敏,陈筝,等.蓄能器对工程机械液压系统影响的仿真与试验[J].中国公路学报,2013,26(2):183-190.MA Dengcheng,YANG Shimin,CHEN Zheng,et al.Simulation and experimental study on impact of accumulator on engineering machinery hydraulic system[J].China journal of highway and transport,2013,26(2):183-190.
    [12]孔祥东,权凌霄,姚静,等.基于力学分析的蓄能器数学模型建立及实验研究[J].液压与气动,2006(7):31-34.KONG Xiangdong,QUAN Lingxiao,YAO Jing,et al.Accumulator is modeled on its stressing model and experiments research[J].Chinese hydraulics&pneumatics,2006(7):31-34.
    [13]崔维成,刘峰,胡震,等.蛟龙号载人潜水器的7 000米级海上试验[J].船舶力学,2012,16(10):1131-1143.CUI Weicheng,LIU Feng,HU Zhen,et al.7 000 m sea trials test of the deep manned submersible"JIAOLONG"[J].Journal of ship mechanics,2012,16(10):1131-1143.
    [14]熊世和.机电系统计算机控制工程[M].成都:电子科技大学出版社,1999:115-122.
    [15]MURAKAMI P,HIROAKI,NAOKA Y.Multiplier-accumulator macro for a 45 MIPS embedded RISC processor[J].IEEE journal of solid-state circuits.1996,31(7):1067-1071.
    [16]SUNG P,KYEONGCHEOL Y.Multi-rate parity accumulator accumulator codes[J].IEEE vehicular technology conference,2003,57(4):551-740.
    [17]杨燕芳.不同工况下皮囊式蓄能器工作参数的选择与计算[D].秦皇岛:燕山大学,2011:25-26.YANG Yangfang.Working parameters selection and calculation of bladder-type accumulator under the different conditions[D].Qinhuangdao:Yanshan University,2011:25-26.
    [18]战兴群,张炎华.二次调节系统中液压蓄能器数学模型的研究[J].中国机械工程,2001,12(3):45-46.ZHAN Xingqun,ZHANG Yanhua.Research on the mathematical model of hydraulic accumulator in the two regulation system[J].China mechanical engineering,2001,12(3):45-46.
    [19]宋孝臣.入口特性蓄能器性能影响的研究[D].秦皇岛:燕山大学,2006:12.SONG Xiaochen.Research on the influence of inlet characteristics on the performance of accumulator[D].Qinhuangdao:Yanshan University,2006:12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700