用户名: 密码: 验证码:
微通道内液-液两相流流型及传质的研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research progress on flow regimes and mass transfer of liquid-liquid two-phase flow in microchannels
  • 作者:钱锦远 ; 李晓娟 ; 吴赞 ; 陈珉芮 ; 金志江 ; 蒙特·桑顿
  • 英文作者:QIAN Jinyuan;LI Xiaojuan;WU Zan;CHEN Minrui;JIN Zhijiang;SUNDéN Bengt;Institute of Process Equipment, College of Energy Engineering, Zhejiang University;Department of Energy Sciences, Lund University;
  • 关键词:液-液两相流 ; 流型 ; 混合传质 ; 微通道
  • 英文关键词:liquid-liquid two-phase flow;;flow regimes;;mixing and mass transfer;;microchannels
  • 中文刊名:HGJZ
  • 英文刊名:Chemical Industry and Engineering Progress
  • 机构:浙江大学能源工程学院化工机械研究所;瑞典隆德大学能源科学系;
  • 出版日期:2019-04-05
  • 出版单位:化工进展
  • 年:2019
  • 期:v.38;No.331
  • 基金:国家自然科学基金(51805470);; 中央高校基本科研业务费专项资金项目(2018QNA4013)
  • 语种:中文;
  • 页:HGJZ201904003
  • 页数:10
  • CN:04
  • ISSN:11-1954/TQ
  • 分类号:35-44
摘要
微通道内液-液两相流流动在微化工系统中占有重要的地位,了解微通道内液-液两相流体流动和传质规律对推动其工业化应用有重要作用。本文以微通道内液-液两相流系统为研究对象,简述了不同工况下微通道内液-液两相流流型和混合传质效率,分析了微通道特征、流体性质和流体流动速度等对流型形成和传质效率的影响。指出目前对于微通道内液-液两相流的研究多处于定性研究,定量研究仅针对某一体系展开,所得结果具有一定的局限性。关于微通道内液-液两相流传质研究实验较多而数值模拟方法相对较少,接下来的研究工作中应该考虑建立微通道内液-液两相流基础研究的数据库,通过分析大量的数据获得有效的流型划分准则和相关经验式以此推动微通道内液-液两相流的工业化应用。同时在传质研究过程中应研究开发相应的数值模拟模型,保证实验和数值模拟相结合,提出有效的传质效率评价机制。
        Liquid-liquid two-phase flow in microchannels plays an important role in micro-chemical engineering. Understanding the role of liquid-liquid two-phase flow, mixing and mass transfer in microchannels is of great importance for improving its industrial applications. This paper mainly focused on the liquid-liquid two-phase flow in microchannels, summarized the different flow patterns and mass transfer coefficients of the liquid-liquid two-phase flow under different operating conditions. The influence of various factors including features of microchannels, properties and flow rates of fluids on the formation of flow patterns and mass transfer coefficients were analyzed. It was pointed out that most of researches on liquid-liquid two-phase flow in microchannels were qualitative. Quantitative researches were aimed at the specific systems and the results haven a few limitations. Moreover, researches on mass transfer of liquid-liquid two-phase flow in microchannels are conducted experimentally and there are relatively few numerical simulations. Thus, the following studies should be considered to establish the database based on the fundamental researches of liquid-liquid two-phase flow. Based on the analysis of numerous data the criteria of regime classification and empirical formulas should be gained for improving its industrial applications. The numerical simulation models were deserved to develop the effective evaluation mechanisms on mass transfer efficiency in liquid-liquid two-phase flow.
引文
[1]赵述芳,白琳,付宇航,等.液滴流微反应器的基础研究及其应用[J].化工进展, 2015, 34(3):593-607, 616.ZHAO S F, BAI L, FU Y H, et al. Fundamental research and applications of droplet-based microreactor[J]. Chemical Industry and Engineering Progress, 2015, 34(3):593-607, 616.
    [2]陈光文,赵玉潮,乐军,等.微化工过程中的传递现象[J].化工学报,2013, 64(1):63-75.CHEN G W, ZHAO Y C, YUE J, et al. Transport phenomena in microchemical engineering[J]. CIESC Journal, 2013, 64(1):63-75.
    [3] YAO C Q, ZHAO Y C, CHEN G W. Multiphase processes with ionic liquids in microreactors:hydrodynamics, mass transfer and applications[J]. Chemical Engineering Science, 2018, 189:340-359.
    [4] ANTONY R, NANDAGOPAL M S G, SREEKUMAR N, et al. Liquidliquid slug flow in a microchannel reactor and its mass transfer properties—A review[J]. Bulletin of Chemical Reaction Engineering&Catalysis, 2014, 9(3):207-223.
    [5]刘赵淼,杨洋,杜宇,等.微流控液滴技术及其应用的研究进展[J].分析化学, 2017, 45(2):282-296.LIU Z M, YANG Y, DU Y, et al. Research progress on microfluidic droplet technology and its application[J]. Chinese Journal of Analytical Chemistry, 2017, 45(2):282-296.
    [6] GUPTA A, KUMAR R. Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction[J]. Microfluidics and Nanofluidics, 2010, 8(6):799-812.
    [7] DE MENECH M, GARSTECKI P, JOUSSE F, et al. Transition from squeezing to dripping in a microfluidic T-shaped junction[J]. Journal of Fluid Mechanics, 2008, 595:141-161.
    [8] SALIM A, FOURAR M, PIRONON J, et al. Oil-water two-phase flow in microchannels:flow patterns and pressure drop measurements[J].Canadian Journal of Chemical Engineering, 2008, 86(6):978-988.
    [9]王维萌,马一萍,陈斌.十字交叉微通道内微液滴生成过程的数值模拟[J].化工学报, 2015, 66(5):1633-1641.WANG W M, MA Y P, CHEN B. Numerical simulation of droplet generation in crossing micro-channel[J]. CIESC Journal, 2015, 66(5):1633-1641.
    [10] ZHAO Y C, CHEN G W, YUAN Q, et al. Liquid-liquid two-phase flow patterns in a rectangular microchannel[J]. AIChE Journal, 2006,52(12):4052-4060.
    [11] KASHID M N, KIWIMINSKER L. Quantitative prediction of flow patterns in liquid-liquid flow in micro-capillaries[J]. Chemical Engineering and Processing, 2011, 50(10):972-978.
    [12] TSAOULIDIS D, DORE V, ANGELI P, et al. Flow patterns and pressure drop of ionic liquid-water two-phase flows in microchannels[J]. International Journal of Multiphase Flow, 2013, 54:1-10.
    [13] RAJ R, MATHUR N, BUWA V V, et al. Numerical simulations of liquid-liquid flows in microchannels[J]. Industrial&Engineering Chemistry Research, 2010, 49(21):10606-10614.
    [14] DAREKAR M, KUMAR SINGH K, MUKHOPADHYAY S, et al.Liquid-liquid two-phase flow patterns in Y-junction microchannels[J]. Industrial&Engineering Chemistry Research, 2017, 56(42):12215-12226.
    [15] GUPTA A, KUMAR R. Flow regime transition at high capillary numbers in a microfluidic T-junction:viscosity contrast and geometry effect[J]. Physics of Fluids, 2010, 22(12):122001.
    [16] WANG W T, LIU Z, JIN Y, et al. LBM simulation of droplet formation in micro-channels[J]. Chemical Engineering Journal, 2011, 173(3):828-836.
    [17] XU J H, LUO G S, LI S W, et al. Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties[J]. Lab on a Chip, 2006, 6(1):131-136.
    [18] ZHAO Y C, SU Y H, CHEN G W, et al. Effect of surface properties on the flow characteristics and mass transfer performance in microchannels[J]. Chemical Engineering Science, 2010, 65(5):1563-1570.
    [19] BASHIR S, REES J M, ZIMMERMAN W B, et al. Simulations of microfluidic droplet formation using the two-phase level set method[J].Chemical Engineering Science, 2011, 66(20):4733-4741.
    [20] SANG L, HONG Y P, WANG F J, et al. Investigation of viscosity effect on droplet formation in T-shaped microchannels by numerical and analytical methods[J]. Microfluidics and Nanofluidics, 2009, 6(5):621-635.
    [21] TIMUNG S, TIWARI V, SINGH A K, et al. Capillary force mediated flow-patterns and non-monotonic pressure drop characteristics of oilwater microflows[J]. Canadian Journal of Chemical Engineering, 2015,93(10):1736-1743.
    [22]杨丽,张晖,王媛媛,等. T型微通道中液-液两相流流动与混合过程分析[J].农业机械学报, 2017, 48(1):397-405.YANG L, ZHANG H, WANG Y Y, et al. Hydrodynamics and mixing process analysis of liquid-liquid two-phase flow in microfluidic Tjunction[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(1):397-405.
    [23] FU T T, WEI L J, ZHU C Y, et al. Flow patterns of liquid-liquid twophase flow in non-newtonian fluids in rectangular microchannels[J].Chemical Engineering and Processing, 2015, 91:114-120.
    [24] KASHID M N, AGAR D W. Hydrodynamics of liquid-liquid slug flow capillary microreactor:flow regimes, slug size and pressure drop[J].Chemical Engineering Journal, 2007, 131(1):1-13.
    [25] CAO Z, WU Z, SUNDéN B. Dimensionless analysis on liquid-liquid flow patterns and scaling law on slug hydrodynamics in cross-junction microchannels[J]. Chemical Engineering Journal, 2018, 344:604-615.
    [26] XU J H, LI S W, TAN J, et al. Correlations of droplet formation in Tjunction microfluidic devices:from squeezing to dripping[J].Microfluidics and Nanofluidics, 2008, 5(6):711-717.
    [27] OISHI M, KINOSHITA H, FUJII T, et al. Confocal micro-PIV measurement of droplet formation in a T-shaped micro-junction[J].Journal of Physics:Conference Series, 2009, 147(1):012061.
    [28] HE P Y, BARTHESBIESEL D, LECLERC E, et al. Flow of two immiscible liquids with low viscosity in Y shaped microfluidic systems:effect of geometry[J]. Microfluidics and Nanofluidics, 2010, 9(2):293-301.
    [29]马化杰,李磊,种道彤,等. T型微通道内液滴生成特性的实验研究[J].工程热物理学报, 2013, 34(12):2284-2287.MA H J, LI L, CHONG D T, et al. Experimental study on formation characteristics of droplets generated in T-shaped microchannels[J].Journal of Engineering Thermophysics, 2013, 34(12):2284-2287.
    [30]魏丽娟,朱春英,付涛涛,等. T型微通道内液滴尺寸的实验测定与关联[J].化工学报, 2013, 64(2):517-523.WEI L J, ZHU C Y, FU T T, et al. Experimental measurement and correlation of droplet size in T-junction microchannels[J]. CIESC Journal, 2013, 64(2):517-523.
    [31]刘赵淼,刘丽昆,申峰. Y型微通道两相流内部流动特性[J].力学学报, 2014, 46(2):209-216.LIU Z M, LIU L K, SHEN F. Flow characteristics of liquid-liquid twophase flow in Y-shaped microchannels[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2):209-216.
    [32]屈健,王谦,韩新月,等.大深宽比双T形微通道内液-液两相流可视化研究[J].化工进展, 2014, 33(10):2583-2587, 2654.QU J, WANG Q, HAN X Y, et al. Flow visualization of liquid-liquid two-phase flow in a double T-type[J]. Chemical Industry and Engineering Progress, 2014, 33(10):2583-2587, 2654.
    [33] WU Z, CAO Z, SUNDéN B. Liquid-liquid flow patterns and slug hydrodynamics in square microchannels of cross-shaped junctions[J].Chemical Engineering Science, 2017, 174:56-66.
    [34] ZHAO Y C, CHEN G W, YUAN Q, et al. Liquid-liquid two-phase mass transfer in the T-junction microchannels[J]. AIChE Journal,2007, 53(12):3042-3053.
    [35] BURNS J, RAMSHAW C. The intensification of rapid reactions in multiphase systems using slug flow in capillaries[J]. Lab on a Chip,2001, 1(1):10-15.
    [36] BAI L, ZHAO S F, FU Y H, et al. Experimental study of mass transfer in water/ionic liquid microdroplet systems using micro-LIF technique[J]. Chemical Engineering Journal, 2016, 298:281-290.
    [37]王佳男,王嘉骏,冯连芳,等.弯曲微通道中液滴内混合过程的数值模拟研究[J].高校化学工程学报, 2014, 28(2):218-222.WANG J N, WANG J J, FENG L F, et al. Numerical study on fluids mixing based on droplet flows in serpentine microchannels[J]. Journal of Chemical Engineering of Chinese Universities, 2014, 28(2):218-222.
    [38] PLOUFFE P, ROBERGE D M, SIEBER J, et al. Liquid-liquid mass transfer in a serpentine micro-reactor using various solvents[J].Chemical Engineering Journal, 2016, 285:605-615.
    [39] KASHID M N, RENKEN A, KIWIMINSKER L, et al. Influence of flow regime on mass transfer in different types of microchannels[J].Industrial&Engineering Chemistry Research, 2011, 50(11):6906-6914.
    [40] SATTARI-NAJAFABADI M, NASR ESFAHANY M, WU Z, et al. The effect of the size of square microchannels on hydrodynamics and mass transfer during liquid-liquid slug flow[J]. AIChE Journal, 2017, 63(11):5019-5028.
    [41] SATTARI-NAJAFABADI M, ESFAHANY M N, WU Z, et al.Hydrodynamics and mass transfer in liquid-liquid non-circular microchannels:comparison of two aspect ratios and three junction structures[J]. Chemical Engineering Journal, 2017, 322:328-338.
    [42] DESSIMOZ A L, CAVIN L, RENKEN A, et al. Liquid-liquid twophase flow patterns and mass transfer characteristics in rectangular glass microreactors[J]. Chemical Engineering Science, 2008, 63(16):4035-4044.
    [43] RAIMONDI N D, PRAT L E, GOURDON C, et al. Experiments of mass transfer with liquid-liquid slug flow in square microchannels[J].Chemical Engineering Science, 2014, 105:169-178.
    [44] JOVANOVIC J, REBROV E V, NIJHUIS T A, et al. Liquid-liquid flow in a capillary microreactor:hydrodynamic flow patterns and extraction performance[J]. Industrial&Engineering Chemistry Research, 2012, 51(2):1015-1026.
    [45] XU B J, CAI W F, LIU X L, et al. Mass transfer behavior of liquid–liquid slug flow in circular cross-section microchannel[J]. Chemical Engineering Research&Design, 2013, 91(7):1203-1211.
    [46] WOITALKA A, KUHN S, JENSEN K F, et al. Scalability of mass transfer in liquid-liquid flow[J]. Chemical Engineering Science, 2014,116:1-8.
    [47] TSAOULIDIS D, ANGELI P. Effect of channel size on liquid‐liquid plug flow in small channels[J]. AIChE Journal, 2016, 62(1):315-324.
    [48] TSAOULIDIS D, ANGELI P. Effect of channel size on mass transfer during liquid-liquid plug flow in small scale extractors[J]. Chemical Engineering Journal, 2015, 262:785-793.
    [49]王文坦,刘喆,邵婷,等.微通道中液滴内部混合过程的μ-LIF可视化和LBM模拟[J].化工学报, 2012, 63(2):375-381.WANG W T, LIU Z, SHAO T, et al.μ-LIF visualization and LBM simulation of mixing behavior inside droplets in microchaneels[J].CIESC Journal, 2012, 63(2):375-381.
    [50] WARD K, FAN Z H. Mixing in microfluidic devices and enhancement methods[J]. Journal of Micromechanics and Microengineering,2015, 25(9).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700