用户名: 密码: 验证码:
微细铣削温度场的建模与仿真
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Modeling and Simulation of Temperature Field in Micro Milling
  • 作者:宁文波 ; 章周伟 ; 陈伟栋 ; 冯泉波
  • 英文作者:NING Wenbo;ZHANG Zhouwei;CHEN Weidong;FENG Quanbo;School of Mechanical Engineering, Sichuan University of Science and Engineering;School of Mechanical and Electronic Engineering, Shandong Transport Vocational College;
  • 关键词:微细铣削 ; 微刀具 ; 热-力模型 ; 温度场
  • 英文关键词:micro milling;;micro cutting tool;;thermal-force model;;temperature field
  • 中文刊名:JXGU
  • 英文刊名:Mechanical Engineer
  • 机构:四川理工学院机械工程学院;山东交通职业学院机械电子工程学院;
  • 出版日期:2019-04-10
  • 出版单位:机械工程师
  • 年:2019
  • 期:No.334
  • 基金:四川省教育厅应用基础重点项目(18ZA0345)
  • 语种:中文;
  • 页:JXGU201904005
  • 页数:3
  • CN:04
  • ISSN:23-1196/TH
  • 分类号:16-18
摘要
微细铣削具有加工零件型面复杂、生产效率高、成本低、材料种类多等优点,成为一种重要的微纳制造使能技术,广泛用于生物医疗、航空航天、能源动力和电子通信等领域。铣削过程中,切削热、切削温度将影响加工质量、刀具耐用度。文中使用有限元法建立微铣削热-力模型,研究微细铣削过程中切削热和温度场的分布,对降低刀具磨损、提高表面加工质量具有重要的意义。
        Micro milling technology is a new manufacturing technology which can process small size and complex structure parts. Micro milling technology has the advantages of high machining efficiency, low machining cost, variety of processing materials and flexible processing. At present, micro milling technology has been an important micro/nano enabling manufacturing technology for machining micro parts. Micro milling technology is widely used in fields of biomedicine,aerospace, energy power, and electronic communications. The cutting heat and temperature distribution may affect dramatically cutting performance and tool wear in the process of micro milling. This paper uses finite element method to establish the thermal-force model of micro milling and study the cutting heat and the distribution of temperature field. It is of great significance to reduce tool wear and improve the quality of surface processing.
引文
[1]程凯,霍德鸿.微切削技术基础与应用[M].丁辉,译.北京:机械工业出版社,2014.
    [2] MERCHANT M E.Mechanics of the metal cutting process I:Orthogonal cutting[J].Journal of Applied Physics,1945(16):267-275.
    [3] MERCHANT M E. Mechanics of the metal cutting process, II:Plasticity conditions in orthogonal cutting[J]. Journal of Applied Physics, 1945(16):318-324.
    [4]朱锟鹏,李科选,梅涛,等.微铣削力建模研究进展[J].机械工程学报,2016, 52(17):20-24.
    [5] XIE L J, SCHMIDT J, SCHMIDT C, et al. 2D FEM estimate of tool wear in turning operation[J].Wear, 2005, 258(10):1479-1490.
    [6] SCHULZE V, VOHRINGER O. Influence of alloying elements on the strain rate and temperature dependence of the flow stress of steels[J].Metall Mater Trans A,2000, 31(3):825-830.
    [7] ASPINWALL D K, MANTLE A L, CHAN W K, et al. Cutting temperatures when ball nose end milling g-TiAl intermetallic alloys[J].CIRP Annals-Manufacturing Technology,2013,62(1):75-78.
    [8]杜宏益,何林,赵先锋.用于ANSYS切削温度场仿真的刀具传热边界分析[J].工具技术,2015, 49(4):12-15.
    [9]孙雅洲,孟庆鑫,韩丽丽,等.微细铣削应力场和温度场的有限元模拟[J].现代制造工程,2008(12):66-69.
    [10]耿永林,张强.TC4钛合金铣削中切削温度的研究[J].黑龙江科技信息,2016(27):177-179.
    [11]许松,李斌.摩擦系数对微铣削加工的影响[J].工具技术,2018(4):116-119.
    [12]闫国栋,冯勇,贾丙辉.切削温度与工件微观组织性能间的影响机制研究[J].制造技术与机床,2017(1):112-118.
    [13]赫培,马廉洁,郭亚鹏,等.脆性材料切削温度理论模型及实验研究[J].人工晶体学报,2017, 46(3):536-540.
    [14]马廉洁,邓航,刘涛,等.二硅酸锂玻璃陶瓷车削加工切削温度试验研究[J].工具技术,2017, 51(12):28-31.
    [15]秦保平,魏智,杨武,等.微铣削热源模型的仿真与比较[J].工具技术,2017, 51(6):43-47.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700