用户名: 密码: 验证码:
DCOIT复合Zn-Ni合金抗菌镀层的制备及其耐SRB腐蚀性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of DCOIT Composited Zn-Ni Alloy Antibacterial Coatings and Sulfate-reducing Bacterial Corrosion Resistance
  • 作者:翟晓凡 ; 管方 ; 王楠 ; 段继周 ; 侯保荣
  • 英文作者:ZHAI Xiao-fan;GUAN Fang;WANG Nan;DUAN Ji-zhou;HOU Bao-rong;CAS Key Laboratory of Marine Environmental Corrosion and Bio-fouling,Institute of Oceanology,Chinese Academy of Sciences;Open Studio for Marine Corrosion and Protection,Pilot National Laboratory for Marine Science and Technology (Qingdao);Center for Ocean Mega-Science,Chinese Academy of Sciences;
  • 关键词:Zn-Ni合金镀层 ; 电镀层 ; 4 ; 5-二氯-N-辛基-4-异噻唑啉-3-酮 ; 硫酸盐还原菌 ; 抗菌 ; 耐蚀
  • 英文关键词:Zn-Ni alloy coating;;electrodeposits;;4,5-dichloro-2-n-octyl-4-isothiazolin-3-one;;sulfate-reducing bacterial;;antibacterial property;;corrosion resistance
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:中国科学院海洋研究所中国科学院海洋环境腐蚀与生物污损重点实验室;青岛海洋科学与技术国家实验室海洋腐蚀与防护开放工作室;中国科学院海洋大科学研究中心;
  • 出版日期:2019-07-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金青年项目(41706080);国家自然科学基金国际(地区)合作项目(41811530090);; 山东省重点研发计划(2018GHY115029)~~
  • 语种:中文;
  • 页:BMJS201907029
  • 页数:9
  • CN:07
  • ISSN:50-1083/TG
  • 分类号:261-269
摘要
目的提高Zn-Ni合金镀层的耐微生物腐蚀性能。方法 在硫酸盐电镀液中添加梯度浓度的4,5-二氯-N-辛基-4-异噻唑啉-3-酮(DCOIT),利用恒电流沉积方法 ,在碳钢表面阴极电沉积获得DCOIT复合Zn-Ni合金镀层。通过电沉积电位监测与电流效率计算评价DCOIT对电沉积过程的影响,利用扫描电子显微镜、电子能谱、X射线晶体衍射等研究DCOIT对Zn-Ni复合镀层形貌、结构与Ni含量的影响,使用傅里叶红外吸收光谱和荧光显微观察法验证DCOIT的成功复合及复合镀层的抗菌性能,最后将DCOIT复合Zn-Ni合金镀层暴露于硫酸盐还原菌(SRB)中,监测菌液的p H与菌体浓度,同时计算镀层的腐蚀速率,并观察镀层的腐蚀形貌,评价复合镀层的耐SRB腐蚀性能。结果 DCOIT在电沉积过程中会吸附在沉积表面,造成沉积电位负移,并略微降低了电流效率。DCOIT的添加显著改变了复合镀层的形貌、结构与Ni含量,其Ni含量与DCOIT的添加量呈线性增长关系,导致其晶体结构转变。DCOIT以有效形式存在于复合Zn-Ni合金镀层中,并显示出抗菌性能,DCOIT添加量为2 mmol/L时,镀层中的复合量最高,抗菌性能最好。最后,DCOIT复合Zn-Ni合金镀层能有效抑制环境中SRB的生长与代谢,自身腐蚀速率减慢,耐蚀性能明显增强。结论 DCOIT能够以有效形式复合于Zn-Ni合金镀层内部,并有效提高了镀层的抗菌性能,使其获得增强的耐SRB腐蚀性能。
        The work aims to improve the microbiological influenced corrosion resistance of Zn-Ni alloy coatings.4,5-dichloro-2-n-octyl-4-isothiazolin-3-one(DCOIT) was added into sulfate electrolyte. DCOIT composited Zn-Ni alloy coatings were obtained on carbon steel by cathodic galvanostatic electrodeposition. By potential monitoring and current efficiency calculation, the influence of DCOIT on electrodeposition was evaluated. Further, scanning electron microscopy, energydispersive X-ray spectroscopy and X-ray diffraction were performed to study the effect of DCOIT on morphologies, structures and Ni contents of the composited Zn-Ni alloy coatings. Then, the Fourier transform infrared spectroscopy and fluorescence microscopy observation were used to verify the existence of DCOIT and the antibacterial effect of the composite coatings. At last,the pH and bacterial concentration variations were monitored by exposing the DCOIT composite Zn-Ni alloy coatings in sulfate-reducing bacterial(SRB) medium and the corrosion rates of the coatings were calculated to evaluate the corrosion resistance of coatings in SRB medium. During the electrodepositing process, DCOIT was absorbed on the depositing surfaces, which led to negative electrodepositing potential shifts and decreased current efficiency. The addition of DCOIT dramatically influenced the morphology, structure and Ni contents of the coatings. The Ni content showed a linear growth relationship with the DCOIT adding concentration, leading to crystalline phase transformation. After electrodepositing, DCOIT existed in the composite coatings with effective molecular structure and showed antibacterial properties successfully. When 2 mmol/L DCOIT was added, the coating showed the largest compound quantity and the best antibacterial properties. Finally, the DCOIT composite Zn-Ni alloy coatings effectively inhibited the growth and metabolism of SRB, thus reducing corrosion rates and enhancing corrosion resistance. DCOIT can be successfully composited into Zn-Ni alloy coating, which effectively improves antibacterial properties and enhances corrosion resistance in SRB medium.
引文
[1]MüLLER C,SARRET M,ANDREU T.Zn-Mn alloys obtained using pulse,reverse and superimposed current modulations[J].Electrochimica acta,2003,48(17):2397-2404.
    [2]BAHROLOLOOM M E,GABE D R,WILCOX G D.Development of a bath for electrodeposition of zinc-cobalt compositionally modulated alloy multilayered coatings[J].Journal of the electrochemical society,2003,150(3):144-151.
    [3]HALL D E.Electrodeposited zinc-nickel alloy coatings-A review[J].Plating and surface finishing,1983,70(11):59-65.
    [4]ALFANTAZI A M,PAGE J,ERB U.Pulse plating of Zn-Ni alloy coatings[J].Journal of applied electrochemistry,1996,26(12):1225-1234.
    [5]SRIRAMAN K R,BRAHIMI S,SZPUNAR J A,et al Characterization of corrosion resistance of electrodeposited Zn-Ni Zn and Cd coatings[J].Electrochimica acta,2013,105:314-323.
    [6]ABOU-KRISHA M M.Effect of pH and current density on the electrodeposition of Zn-Ni-Fe alloys from a sulfate bath[J].Journal of coatings technology and research,2012,9(6):775-783.
    [7]LEWIN R.Microbial adhesion is a sticky problem[J].Science,1984,224(4647):375-377.
    [8]ZHANG P,XU D,LI Y,et al.Electron mediators accelerate the microbiologically influenced corrosion of 304stainless steel by the Desulfovibrio vulgaris biofilm[J].Bioelectrochemistry,2015,101:14-21.
    [9]LI Y,XU D,CHEN C,et al.Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry:A review[J].Journal of materials science&technology,2018,34(10):1713-1718.
    [10]XU D,LI Y,GU T.Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria[J].Bioelectrochemistry,2016,110:52-58.
    [11]XU D,LI Y,SONG F,et al.Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis[J].Corrosion science,2013,77(12):385-390.
    [12]REYES-VIDAL Y,SUAREZ-ROJAS R,RUIZ C,et al.Electrodeposition,characterization,and antibacterial activity of zinc/silver particle composite coatings[J].Applied surface science,2015,342:34-41.
    [13]XIA J,YANG C,XU D,et al.Laboratory investigation of the microbiologically influenced corrosion(MIC)resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm[J].Biofouling,2015,31(6):481-492.
    [14]MORADI M,DUAN J,DU X.Investigation of the effect of 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one inhibition on the corrosion of carbon steel in Bacillus sp.inoculated artificial seawater[J].Corrosion science,2013,69:338-345.
    [15]魏由洋,刘慧丛,李卫平,等.一种简便的锌镍合金镀层镍含量化学分析方法[J].腐蚀与防护,2010,31(4):307-309.WEI You-yang,LIU Hui-cong,LI Wei-ping,et al.A simple and convenient chemical analysis method for nickel content in zinc-nickel alloy coating[J].Corrosion&protection,2010,31(4):307-309.
    [16]ROVENTI G,CECCHINI R,FABRIZI A,et al.Electrodeposition of nickel-zinc alloy coatings with high nickel content[J].Surface&coatings technology,2015,276:1-7.
    [17]ZHAI X,MYAMINA M,DUAN J,et al.Microbial corrosion resistance of galvanized coatings with 4,5-dichloro-2-n-octyl-4-isothiazolin-3-one as a biocidal ingredient in electrolytes[J].Corrosion science,2013,72(4):99-107.
    [18]RAMANAUSKAS R,GUDAVI?IūT?L,KOSENKOA,et al.Structural and corrosion characterisation of pulse plated Zn and Zn-Ni alloy coatings[J].Transactions of the institute of metal finishing,2012,90(5):237-245.
    [19]GHAZIOF S,GAO W.Electrodeposition of single gamma phased Zn-Ni alloy coatings from additive-free acidic bath[J].Applied surface science,2014,311:635-642.
    [20]RENNEBERG R,LISDAT F,ANDRESEN D,et al.Biosensing for the 21st century[M].Berlin:Springer,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700