用户名: 密码: 验证码:
氧化石墨烯/硅烷自组装涂层对镁合金耐腐蚀和耐磨损性能的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Graphene Oxide/Silane Self-assemble Coating on Corrosion and Wear Resistance of Mg Alloy
  • 作者:楚景慧 ; 佟立波 ; 江忠浩
  • 英文作者:CHU Jing-hui;TONG Li-bo;JIANG Zhong-hao;Jilin University;Xi'an University of Architecture and Technology;
  • 关键词:镁合金 ; 自组装涂层 ; GO ; 硅烷 ; 耐蚀性 ; 耐磨性
  • 英文关键词:Mg alloy;;self-assemble coating;;GO;;silane;;corrosion resistance;;wear resistance
  • 中文刊名:BMJS
  • 英文刊名:Surface Technology
  • 机构:吉林大学;西安建筑科技大学;
  • 出版日期:2019-03-20
  • 出版单位:表面技术
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金面上项目(51171178);; 吉林省国际合作项目(20180414016GH)~~
  • 语种:中文;
  • 页:BMJS201903011
  • 页数:7
  • CN:03
  • ISSN:50-1083/TG
  • 分类号:76-82
摘要
目的同时改善镁合金的耐腐蚀和耐磨损性能。方法将镁合金表面进行羟基化处理,依次在1,2-双(三乙氧基硅基)乙烷(BTSE)和氧化石墨烯(GO)溶液中浸渍,反复进行,得到一定层数的自组装涂层。通过扫描电子显微镜(SEM)、能谱仪(EDS)表征自组装涂层的形貌和组成。通过电化学测试、摩擦磨损实验,研究涂层对镁合金耐腐蚀、耐磨损性能的影响,并通过扫描电子显微镜、光学显微镜(OM)和表面轮廓仪,对磨痕形貌、深度和宽度进行了分析。结果自组装涂层表面有氧化石墨烯的层片状结构,最外层的双硅烷分子层将底层完全覆盖,涂层具有较好的致密性和完整性。由极化曲线可得,GO/BTSE涂层将镁基底的腐蚀速率由1.45×10~(-1)mm/a减小到1.43×10~(-2)mm/a,降低了一个数量级。电化学阻抗谱的等效电路拟合结果表明,GO/BTSE涂层将裸镁合金的电荷转移电阻由562.2Ω·cm~2增大到1559Ω·cm~2。另外,磨损实验结果表明,镁合金具有较大的摩擦系数,在0.32~0.42范围内波动。涂覆GO/BTSE后,样品的摩擦系数明显降低,在0.20~0.23范围内波动。自组装涂层有效降低了基底合金的磨损率,由3.51×10~(-3)mm~3/(N×m)减小到3.24×10~(-5)mm~3/(N×m)。结论双硅烷和氧化石墨烯之间通过氢键连接,能够有效提高层片之间的结合力,使涂层致密,并且能够显著改善镁合金的耐蚀和耐磨性。
        The work aims to improve the corrosion and abrasion resistance of Mg alloys. The surface of Mg alloy was hydroxylated and then immersed into the bis(triethoxysilyl) ethane(BTSE) and graphene oxide(GO) solution for a time repeatedly to obtain the self-assembled coating with certain layers. The scanning electron microscopy(SEM) and energy dispersive spectrometer(EDS) were used to characterize the morphologies and composition of coating. The effects of coating on corrosion and wear resistance of Mg alloy were studied by the electrochemical tests and tribological measurements. The morphologies,depth and width of wear area were deeply analyzed by SEM, optical microscope(OM) and 3D surface profilometer. The sheet-like structure of GO was observed on the surface of self-assembled coating. The BTSE molecule on the top layer of film covered the bottom completely, and the film exhibited good density and integrity. Through the potentiodynamic polarization curves, the GO/BTSE coating decreased the corrosion rate from 1.45×10~(-1)mm/a to 1.43×10~(-2)mm/a which was reduced by an order of magnitude. The fitting results of equivalent circuit in electrochemical impedance spectroscopy showed that GO/BTSE coating increased the value of Rt on Mg substrate from 562.2 Ω·cm~2 to 1559 Ω·cm~2. In addition, the wear test showed that Mg alloy had high coefficient of friction(COF) at the range of 0.32~0.42. The COF of sample with GO/BTSE coating was obviously decreased, which fluctuated at the range of 0.20~0.23. The coating on Mg substrate effectively reduced the wear rate from 3.51×10~(-3)mm~3/(N×m) to 3.24×10~(-5)mm~3/(N×m). The hydrogen bonds formed between GO sheets and BTSE molecule can effectively enhance the interaction between layers and contribute to the density of coating. Besides, the coating obviously improves the corrosion and wear resistance of Mg substrate.
引文
[1]邱六,朱胜,王晓明,等.镁合金腐蚀与防护的研究现状[J].热加工工艺, 2018, 47(16):31-36.QIU Liu, ZHU Sheng, WANG Xiao-ming, et al. Research status of corrosion and protection of magnesium alloys[J].Hot working technology, 2018, 47(16):31-36.
    [2]郭兴伍,郭嘉成,章志铖,等.镁合金材料表面处理技术研究新动态[J].表面技术, 2017, 46(3):53-65.GUOXing-wu,GUOJia-cheng,ZHANGZhi-cheng,et al.Newdevelopmenttrendofsurfacetreatmenttechnology for magnesium alloys[J]. Surface technology, 2017,46(3):53-65.
    [3]刘志江,朱卫国.镁合金电化学转化膜的组成及反应机理[J].表面技术, 2018, 47(7):209-213.LIU Zhi-jiang, ZHU Wei-guo. Constituents and reaction mechanism of electrochemical conversion coating on magnesium alloys[J]. Surface technology, 2018, 47(7):209-213.
    [4]高志恒.镁合金的腐蚀特性及防护技术[J].表面技术,2016, 45(3):169-177.GAOZhi-heng.Corrosioncharacteristicsandprotection techniquesforMgalloys[J].Surfacetechnology,2016,45(3):169-177.
    [5]金永学,刘晓国.石墨烯的表面改性及其在涂层中的应用[J].电镀与涂饰, 2018, 37(2):67-71.JINYong-xue,LIUXiao-guo.Surfacemodificationof graphene and its application in coatings[J]. Electroplating&Finishing, 2018, 37(2):67-71.
    [6]黄飞,黄峰,蒋涛明,等.石墨烯纳米碎片(GNPs)复合涂层的制备及其耐蚀性[J].腐蚀与防护,2017,38(3):168-171.HUANGFei,HUANGFeng,JIANGTao-ming,etal.Graphenenanopieces(GNPs)compositecoatingpreparation and its anti-corrosion performance[J]. Corrosion&protection, 2017, 38(3):168-171.
    [7]SCHRIVER M, REGAN W, GANNETT W J, et al. Graphene as a long-term metal oxidation barrier:Worse than nothing[J]. Acs nano, 2013, 7(7):5763.
    [8]邓雪阳,潘兰兰,胡婷,等.钛合金表面氧化石墨烯涂层的制备[J].国际口腔医学杂志, 2018, 45(5):539-545.DENG Xue-yang, PAN Lan-lan, HU Ting, et al. Preparationofgrapheneoxidecoatingsontitaniumalloysurface[J]. International journal of atomatology, 2018, 45(5):539-545.
    [9]田浩亮,郭孟秋,王长亮,等.氧化石墨烯改性自润滑耐磨涂层的组织与耐磨机理[J].稀有金属材料与工程,2017, 46(7):1881-1886.TIANHao-liang,GUOMeng-qiu,WANGChang-liang,et al. Microstructure and wear behavior of graphene oxide modifiedself-lubricatedwearresistantcoating[J].Rare metal materials and engineering, 2017, 46(7):1881-1886.
    [10]ZHUY,MURALIS,CAIW,etal.Grapheneandgrapheneoxide:synthesis,properties,andapplications[J].Advanced materials, 2010, 22(46):3906-3924.
    [11]刘莉莉,董锐.氧化石墨烯改性丙烯酸树脂涂层的制备及性能研究[J].化工新型材料, 2016, 44(8):183-185.LIU Li-li, DONG Rui. Preparation and property of acrylic resincoatingmodifiedbygrapheneoxide[J].Newchemical materials, 2016, 44(8):183-185.
    [12]XUE Bing, YU Mei, LIU Jian-hua, et al. Corrosion protective properties of silane functionalized graphene oxide filmonAA2024-T3aluminumalloy[J].Journalofthe electrochemical society, 2016, 163(13):C798-C806.
    [13]朱阮利,魏博,胡小涛,等.硅烷膜固化方式对AZ91镁合金耐蚀性的影响[J].沈阳工业大学学报,2016,38(1):36-41.ZHU Ruan-li, WEI Bo, HU Xiao-tao, et al. Effect of curingmethodsofsilanefilmoncorrosionresistanceof AZ91 magnesium alloy[J]. Journal of Shenyang University of Technology, 2016, 38(1):36-41.
    [14]孙成军,王柱,刘海峰.一种多硅偶联剂的合成及其耐腐蚀性能[J].表面技术, 2018, 47(2):171-176.SUNCheng-jun,WANGZhu,LIUHai-feng.Synthesis andcorrosionresistanceofamulti-siliconcouplingagent[J]. Surface technology, 2018, 47(2):171-176.
    [15]LIUX,YUEZ,ROMEOT,etal.Biofunctionalized anti-corrosivesilanecoatingsformagnesiumalloys[J].Acta biomaterialia, 2013, 9(10):8671-8677.
    [16]高子茹,文宇佳,易生平,等.金属表面硅烷前处理技术的研究进展[J].有机硅材料, 2018, 32(S1):98-102.GAO Zi-ru, WEN Yu-jia, YI Sheng-ping, et al. Developmentofpretreatmenttechnologyofmetalsurfacesilane[J]. Silicone Material, 2018, 32(S1):98-102.
    [17]姜逢维,吴英豪,刘刚,等.耐腐蚀氧化石墨烯复合涂层的研究进展[J].表面技术, 2017, 46(11):126-134.JIANG Feng-wei, WU Ying-hao, LIU Gang, et al. Research progress of anti-corrosive graphene oxide composite coatings[J]. Surface technology, 2017, 46(11):126-134.
    [18]江兵兵,宋琼芳,陈明,等.层层自组装功能化涂层及其生物应用研究进展[J].湖北大学学报(自然科学版),2017, 39(6):639-645.JIANG Bing-bing, SONG Qiong-fang, CHEN Ming, et al.Advanced progress of layer by layer self-assembly functional coating and its application in biology[J]. Journal of Hubei University(Natural Science), 2017, 39(6):639-645.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700