用户名: 密码: 验证码:
基于TG-FTIR研究Fe_2O_3对烟煤/半焦混合燃烧特性和动力学的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation into the Effect of Fe_2O_3 on Combustion Characteristics and Kinetic of Coal/Char Co-Combustion Based on TG-FTIR
  • 作者:户英杰 ; 王志强 ; 程星星 ; 马春元
  • 英文作者:HU Ying-Jie;WANG Zhi-Qiang;CHENG Xing-Xing;MA Chun-Yuan;School Of Energy And Power Engineering, Shandong University;
  • 关键词:煤焦混合燃烧 ; 催化 ; 燃烧特性 ; 反应动力学
  • 英文关键词:coal-char co-combustion;;catalysis;;combustion characteristics;;kinetics
  • 中文刊名:GCRB
  • 英文刊名:Journal of Engineering Thermophysics
  • 机构:山东大学能源与动力工程学院;
  • 出版日期:2019-04-15
  • 出版单位:工程热物理学报
  • 年:2019
  • 期:v.40
  • 基金:国家重点研发计划(No.2017YFB0602002)
  • 语种:中文;
  • 页:GCRB201904033
  • 页数:7
  • CN:04
  • ISSN:11-2091/O4
  • 分类号:218-224
摘要
基于TG-FTIR联用技术研究Fe_2O_3对烟煤与半焦混合燃烧特性的影响,通过Starink法分析Fe_2O_3对样品不同反应阶段活化能的影响,结果表明:Fe_2O_3明显降低前期反应的活化能,使混合燃料的挥发分提前析出着火,降低着火温度T_i和前期最大失重峰温度T_1约18和50℃,提高混合燃料前期的可燃性;同时Fe_2O_3作为氧载体对混合燃料中后期固定碳的燃烧也具有催化作用,使得拐点温度T_o和后期最大失重峰温度T_2前移,并使中期反应活化能E_α趋于平稳,缓解了"抢风"现象,使中期燃烧过程变得平稳,在反应末期Fe_2O_3依然具有积极的催化作用,整个反应的平均活化能从82.8 kJ·mol~(-1)降低为72.1 kJ.mol~(-1),总体上提高了混合燃料综合燃烧性能;两种样品燃烧产生的气体主要是CO_2,其排放峰形基本与各自的DTG曲线对应.
        Study on the effect of Fe_2O_3 on combustion characteristics of coal-char co-combustion based on TG-FTIR,and the effect of Fe_2O_3 on activation energy of samples in different stages of reaction was analyzed by Starink method. The results show that,Fe_2O_3 could significantly reduce the activation energy of early phase reaction, and contribute to the release and combustion of volatile matter, and reduce the ignition temperature T_i and the peak temperature of early weight loss T_1 by18 and 50℃, and improve the ignitability of the mixing fuel. Fe_2O_3 also has catalytic effect on the combustion of fixed carbon as oxygen carrier, make the activation energy Ea and the combustion process of the medium-term reaction stable. In later stage reaction, Fe_2O_3 still has a positive catalytic effect on the coal-char co-combustion. With Fe_2O_3 addition, the average activation energy of whole reaction processes was decreased from 82.8 to 72.1 kJ-mol~(-1), and the comprehensive combustion performance of coal-char blended was improved. the main gaseous products of two kinds of samples combustion is CO_2, and the temperatures of CO_2 intensity peaks of two kinds of samples are similar to those maximum mass loss rate peaks.
引文
[1] Wang Y F, Song Y M, Zhi K D, et al. Combustion Kinetics of Chinese Shenhua Raw Coal and Its Pyrolysis Carbocoal[J]. Journal of the Energy Institute, 2017, 90(4):624-633
    [2] Katalambula H, Gupta R. Low-Grade Coals:A Review of Some Prospective Upgrading Technologies[J]. Energy&Fuels, 2009, 23(7):3392-3405
    [3] Song H J, Liu G R, Zhang J Z, et al. Pyrolysis Characteristics and Kinetics of Low Rank Coals by TG-FTIR Method[J]. Applied Energy, 2017, 156:454-460
    [4] Pei P, Wang Q C, Wu D H. Application of RegenerativeHigh Temperature Air Combustion Technology on LowRank Coal Pyrolysis[J]. Applied Energy, 2015, 156:762-766
    [5] Zou C, Zhao J X, Li X M, et al. Effects of Catalysts on Combustion Reactivity of Anthracite and Coal Char With Low Combustibility at Low/high Heating Rate[J]. Journal of Thermal Analysis and Calorimetry, 2016, 126(3):1469-1480
    [6] Yao Y, Zhu J G, Lu Q G. Experimental Study on Nitrogen Transformation in Combustion of Pulverized Semicoke Preheated in a Circulating Fluidized Bed[J]. Energy&Fuels, 2015, 29(6):3985-3991
    [7] Ouyang Z Q, Zhu J G, Lu Q G. Experimental Study on Preheating and Combustion Characteristics of Pulverized Anthracite Coal[J]. Fuel, 2013, 113:122-127
    [8]巢昌耀,吴铿,杜瑞岭,等.煤粉与半焦的混合燃烧特性及动力学分析[J].北京科技大学学报,2016, 38(11):1532-1538Chao C Y, Keng W U, Rui-Ling D U, et al. Combustion Characteristics and Kinetic Analysis of Pulverized Coal and Semicoke[J]. Chinese Journal of Engineering, 2016,38(11):1532-1538
    [9]张华,张建良,徐润生,等.兰炭与烟煤混合燃烧特性及机制分析[J].中国冶金,2016, 26(2):7-12Zhang H, Zhang J L, Xun R S, et al. Combustion Characteristics and Mechanism Analysis of Blended Coal of Semi Coke and Bituminous Coal[J]. China Metallurgy,2016, 26(2):7-12
    [10]赵世永.神木煤与半焦混合燃烧特性的热重分析[J].煤炭科学技术,2007, 35(7):84-86Zhao S Y. Thermal Gravity Analysis on Combined Combustion Features of Shenmu Coal and Semi Coke[J]. Coal Science and Technology, 2007, 35(7):84-86
    [11] Gong X Z, Guo Z C, Wang Z. Reactivity of Pulverized Coals During Combustion Catalyzed by CeO_2 and Fe_2O_3[J]. Combustion and Flame, 2010, 157(2):351-356
    [12]张辉,刘应书,房连增,等.热重分析法研究不同添加剂对煤粉的催化燃烧[J].北京科技大学学报,2013, 35(6):818-825Zhang H, Liu Y S, Fang L Z, et al. Catalytic Combustion of Different Additives on Coal Studied by Thermogravimetry[J]. Chinese Journal of Engineering, 2013, 35(6):818-825
    [13] Cheng J, Zhou F, Xuan X X, et al. Cascade Chain Catalysis of Coal Combustion by Na-Fe-Ca Composite Promoters From Industrial Wastes[J]. Fuel, 2016, 181:820-826
    [14] Gong X Z, Guo Z C, Wang Z. Variation on Anthracite Combustion Efficiency with CeO(2)and Fe(2)O(3)Addition by Differential Thermal Analysis(DTA)[J]. Energy,2010, 35(2):506-511
    [15]公旭中,郭占成,王志.热重法研究K2CO_3与Fe203对煤粉燃烧反应性的影响[J].燃料化学学报,2009, 37(1):42-48Gong X Z, Guo Z C, Wang Z. Effect of K2CO3 and Fe_2O_3on Combustion Reactivity of Pulverized Coal by Thermogravimetry Analysis[J]. Journal of Fuel Chemistry&Technology, 2009, 37(1):42-48
    [16]徐建,章祥林,靳廷甲.Fe203和K2CO_3对高灰分煤催化燃烧影响及机理分析[J].硅酸盐通报,2016, 35(6):1841-1846Xu J, Zhang X L, Jin T J. Effect of Fe_2O_3 and K2CO3 on Combustion and Catalytic Mechanism Analysis of High Ash Coal From Huaibei Mining Area[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(6):1841-1846
    [17]公旭中,郭占成,王志.Fe203催化无烟煤燃烧燃点降低机理的实验研究[J].化工学报,2009, 60(7):1707-1713Gong X, Guo Z, Zhi W. Experimental Study on Mechanism of Lowering Ignition Temperature of Anthracite Combustion Catalyzed by Fe_2O_3[J]. Journal of the Chemical Industry&Engineering Society of China, 2009, 60(7):1707-1713
    [18] Wu J Z, Wang B F, Cheng F Q. Thermal and Kinetic Characteristics of Combustion of Coal Sludge[J]. Journal of Thermal Analysis and Calorimetry, 2017, 129(3):1899-1909
    [19]任宁,张建军.热分析动力学数据处理方法的研究进展[J].化学进展,2006, 18(4):410-416Ren N Z J. Progress in Datum Treatment Methods of Thermal Analysis Kinetics[J]. Progress in Chemistry,2006, 18(4):410-416
    [20] Vyazovkin S, Burnham A K, Criado J M, et al. ICTAC Kinetics Committee Recommendations for Performing Kinetic Computations on Thermal Analysis Data[J]. Thermochimica Acta, 2011, 520(1/2):1-19
    [21]廖艳芬,曹亚文,吴淑梅,等.基于TG-FTIR的印染污泥与烟煤掺烧特性研究[J].华南理工大学学报(自然科学版),2016, 44(5):1-9Liao Y F, Cao Y W, Shu-Mei W U, et al. Investigation into Co-Combustion Characteristics of Dyeing Sludge and Bituminous Coal Based on TGA-FTIR[J]. Journal of South China University of Technology, 2016, 44(5):1-9
    [22]闫云飞,张磊,张力.劣质煤掺混生活污泥的富氧燃烧特性[J].工程热物理学报,2013, 34(8):1596-1599Yan Y F, Zhang L, Zhang L. Combustion Characteristics of Inferior Coal and Sludge Mixture in Oxygen Enrichment Atmosphere[J]. Journal of Engineering Thermophysics, 2013, 34(8):1596-1599
    [23] Chen Y, Mori S, Pan W P. Studying the Mechanisms of Ignition of Coal Particles by TG-DTA[J]. Thermochimica Acta, 1996, 275(1):149-158
    [24] Wang C P, Wu Y J, Liu Q, et al. Analysis of the Behaviour of Pollutant Gas Emissions During Wheat Straw/coal Cofiring by TG-FTIR[J]. Fuel Processing Technology,2011, 92(5):1037-1041
    [25] Scala F. Fluidized-Bed Combustion of Single Coal Char Particles:An Analysis of the Burning Rate and of the Primary CO/CO_2 Ratio[J]. Energy&Fuels, 2011, 25(3):1051-1059

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700