用户名: 密码: 验证码:
双开口气波制冷机振荡管内流动机理实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental research on flow mechanism analysis in oscillating tube of double-opening wave refrigerator
  • 作者:王静娴 ; 郑友林 ; 胡恒 ; 魏蓓 ; 李奇 ; 胡大鹏
  • 英文作者:WANG Jingxian;ZHENG Youlin;HU Heng;WEI Bei;LI Qi;HU Dapeng;School of Chemical Machinery and Safety, Dalian University of Technology;Sinopec Petroleum Exploration and Production Research Institute;
  • 关键词:制冷 ; 测量 ; 实验验证 ; 非定常流动 ; 数值模拟
  • 英文关键词:refrigeration;;measurement;;experimental validation;;unsteady flow;;numerical simulation
  • 中文刊名:HGSZ
  • 英文刊名:CIESC Journal
  • 机构:大连理工大学化工机械与安全学院;中国石化石油勘探开发研究院;
  • 出版日期:2018-12-25 08:59
  • 出版单位:化工学报
  • 年:2019
  • 期:v.70
  • 基金:国家自然科学基金项目(21476036);; 国家科技重大专项(2016ZX0566005-002)
  • 语种:中文;
  • 页:HGSZ201904008
  • 页数:7
  • CN:04
  • ISSN:11-1946/TQ
  • 分类号:67-73
摘要
搭建了双开口制冷整机实验平台,采集不同转速下振荡管内动态压力,对气波制冷整机内部波系关系对制冷的影响进行机理研究。首先,应用基于CFD的数值计算方法对本实验进行模拟,验证了该计算方法具有较高精度;其次,根据不同转速下管内实测压力绘制波系关系图,得到在最大制冷温降时,反向压缩波最弱,波系匹配最为合理;最后,分析压缩波振荡现象的原因及影响,转速越接近最佳转速,压缩波携带能量越小,对低温气影响越少。
        A double-opening refrigeration machine experimental platform was built to collect the dynamic pressure in the oscillating tube at different speeds, and the mechanism of the internal wave relationship of the gas-wavecooling machine was studied. First, the experiment is simulated by a CFD(computational fluid dynamics) numerical simulation method, the simulated value agree fairly well with the experiment pressure data, which has proven that this simulation method has a high precision. Then,the flow waves diagrams under different rotation rate were plotted based on the experiment pressure data. It shows that when the temperature gap between high pressure gas and low temperature gas reaches maximum, reflect shock wave intensity is the lowest and the relation between waves is most reasonable. Finally, the compression wave oscillation phenomenon is analyzed, which comes to a conclusion that the oscillation increases low temperature gas temperature. When the rotation rate approaches the best optimal value, the weaker the wave energy is and the less its impact is.
引文
[1] Pezhman A, Norbert M. Wave rotor research program at Michigan state university[C]//41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Tucson, Arizona, USA:American Institute of Aeronautics and Astronautics, 2005:3844-3859.
    [2] Kentfield J. Wave rotor and highlights of their development[C]//34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Cleveland, Ohio, USA:American Institute of Aeronautics and Astronautics, 1988:13-15.
    [3]于洋,刘培启,王云磊,等.高效气波冷凝装置流动及热力学特性[J].化工学报, 2017, 68(7):3039-3048.Yu Y, Liu P Q, Wang Y L, et al. Flow and thermodynamic properties of efficient gas wave refrigeration plant[J]. CIESC Journal, 2017, 68(7):3039-3048.
    [4]代玉强.外循环耗散式气波制冷机理分析与实验研究[D].大连:大连理工大学, 2010.Dai Y Q. Principle study and experimental investigation of gas waves refrigeration by aggregated thermal dissipation[D]. Dalian:Dalian University of Technology, 2010.
    [5] Dai Y Q, Liu F X, Wu J T, et al. Influence of skewing of contact face on performance of wave rotor refrigerators and superchargers[C]//The ASME 2013 International Mechanical Engineering Congress and Exposition. San Diego, California, USA:ASME,2013:63449.
    [6] Dai Y Q, Liu P Q, Wu J T, et al. Unsteady behavior of real gas in wave rotor refrigerators[J]. Advanced Materials Research, 2011,236/237/238:1516-1522.
    [7] Hu D P, Li R F, Liu P Q, et al. The design and influence if port arrangement in an improved wave rotor refrigerator performance[J]. Applied Thermal Engineering, 2016, 107:207-217.
    [8]赵家权.振荡管内激波增压特性强化气波制冷性能研究[D].大连:大连理工大学, 2013.Zhao J Q. Studying on gas wave refrigeration enhancement by the pressurize characteristics of shock wave in oscillation tube[D].Dalian:Dalian University of Technology, 2013.
    [9] Zhao J Q, Hu D P. An improved wave rotor refrigerator using an outside gas flow for recycling the expansion work[J]. Shock Waves,2017, 27(2):325-332.
    [10] Hu D P, Yu Y, Liu P Q. Enhancement of refrigeration performance by energy transfer of shock wave[J]. Applied Thermal Engineering, 2017, 130:309-318.
    [11]于洋.激波传递能量强化双开口振荡管制冷性能研究[D].大连:大连理工大学, 2018.Yu Y. Enhancement of refrigeration performance by shock-wave transmission energy in double-opening oscillating tube[D].Dalian:Dalian University of Technology, 2018.
    [12]丁美霞.径流式气波制冷机性能参数研究[D].大连:大连理工大学, 2007.Ding M X. Influent of parameters on the performance of pressure exchanging refrigerator[D]. Dalian:Dalian University of Technology, 2007.
    [13] Liu P Q, Zhu Y, Hu D P, et al. Investigation and optimization of wave motion behavior in pressure oscillation tube[J]. Experimental Thermal and Fluid Science, 2013, 50:193-200.
    [14]陈铭诤,吴文.气波机一维非定常定熵流动图解法[J].力学情报, 1973, 6:3-20.Chen M Z, Wu W. Diagrammatic method of one dimensional unsteady entropy flow for gas-wave machine[J]. Intelligence of Mechanics, 1973, 6:3-20.
    [15] Chan S N, Liu H X, Hu X Y. Wave system analyses of four-port through-flow wave rotor[J]. Journal of Aerospace Power, 2013, 28(2):410-417.
    [16] Gilberto M, Mark S. Preliminary design of a double expansion through flow wave rotor:thermal and gas dynamic analysis[C]//Turbine Technical Conference and Exposition of ASME Turbo Expo 2013. San Antonio, Texas, USA:International Gas Turbine Institute, 2013:T37A026.
    [17] Daniel W. A general numerical model for wave-rotor analysis[C]//NASA Technical Memorandum 105740. Cleveland, Ohio, USA:NASA Lewis Research Center, 1992:92N31484.
    [18] Fatsis A, Lafond A, Ribaud Y. Preliminary analysis of the flow inside a three-port wave rotor by means of a numerical model[J].Aerospace Science and Technology, 1998, 2(5):289-300.
    [19]刘培启,徐思远,王泽武,等.偏角对气波制冷机制冷效率的影响及预测[J].化工学报, 2014, 65(11):4271-4277.Liu P Q, Xu S Y, Wang Z W, et al. Influence of offset angle on refrigeration efficiency of gas wave refrigerator and prediction for optimal offset angle[J]. CIESC Journal, 2014, 65(11):4271-4277.
    [20] Okamoto K, Nagashima T. Simple numerical modeling for gas dynamic design of wave rotors[J]. Journal of Propulsion and Power,2007, 23(1):99-107.
    [21] Edwin L R J, Mocsari J C, Nalim M R. Analytic methods for design of eave cycle rotor for wave rotor core engine[C]//AIAA29th Joint Propulsion Conference and Exhibit. Monterey, CA:The American Institute of Aeronautics and Astronautics, 1993:1-12.
    [22]赵家权,刘培启,赵文静,等.激波管中非定常凝结现象的数值分析[J].化工学报, 2012, 63(4):1050-1055.Zhao J Q, Liu P Q, Zhao W J, et al. Numerical analysis of unsteady condensation during expansion in shock tube[J]. CIESC Journal, 2012, 63(4):1050-1055.
    [23]赵文静,胡大鹏,刘培启,等.端口夹角对气波引射器性能的影响和预测[J].化工学报, 2012, 63(2):573-577.Zhao W J, Hu D P, Liu P Q, et al. Influence of port angle on performance of gas wave ejector and prediction for optimal angle[J]. CIESC Journal, 2012, 63(2):573-577.
    [24] Koji O, Toshio N. Visualization of wave rotor inner flow dynamics[J]. Journal of Propulsion and Power, 2007, 23(2):292-300.
    [25] Patankar S V. Numerical Heat Transfer and Fluid Flow[M]. New York:McGraw-Hill, 1980.
    [26] Chang C H, Liou M S. A new approach to the simulation of compressible multi-fluid flows with AUSM+scheme[C]//AIAA16th Computational Fluid Dynamics Conference. Orlando,Florida, USA:The American Institute of Aeronautics and Astronautics, 2003:4107.
    [27]王海涛.变截面两端开口压力振荡管制冷性能分析[D].大连:大连理工大学, 2017.Wang H T. Refrigeration performance analysis of the variable cross-section double-opening pressure oscillation tube[D].Dalian:Dalian University of Technology, 2017.
    [28] Hu D P, Li R F, Liu P Q, et al. The loss in charge process and effects on performance of wave rotor refrigerator[J]. International Journal of Heat and Mass Transfer, 2016, 100:497-507.
    [29]潘锦珊,单鹏.气体动力学基础[M].北京:国防工业出版社,2011.Pan J S, Shan P. Fundamentals of Gas Dynamics[M]. Beijing:National Defense Industry Press, 2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700