用户名: 密码: 验证码:
微铣金属表面微沟槽结构的粗糙度及形貌分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis of roughness and morphology of metal surface grooves by micro milling
  • 作者:张金峰 ; 封超 ; 马芸慧 ; 唐微 ; 巩亚东
  • 英文作者:ZHANG Jin-feng;FENG Chao;MA Yun-hui;TANG Wei;GONG Ya-dong;College of Mechanical Engineering,Shandong University of Science and Technology;School of Mechanical Engineering and Automation,Northeastern University;
  • 关键词:表面粗糙度 ; 铣削参量 ; 切削厚度 ; 刀具跳动
  • 英文关键词:surface roughness;;milling parameters;;milling thickness;;tool run-out
  • 中文刊名:GXJM
  • 英文刊名:Optics and Precision Engineering
  • 机构:山东科技大学机械电子工程学院;东北大学机械与自动化学院;
  • 出版日期:2018-12-15
  • 出版单位:光学精密工程
  • 年:2018
  • 期:v.26
  • 基金:国家自然科学基金资助项目(No.51775100,No.51705069);; 山东省自然科学基金资助项目(No.BS2014ZZ007);; 中国博士后科学基金资助项目(No.2016M5922165);; 青岛博士后应用研究资助项目(No.2015182);; 校人才引进科研启动基金资助项目(No.2014RCJJ023)
  • 语种:中文;
  • 页:GXJM201812017
  • 页数:14
  • CN:12
  • ISSN:22-1198/TH
  • 分类号:131-144
摘要
为了提高和改善微沟槽表面质量,设计了高速微铣削实验,研究了微沟槽底面表面粗糙度和侧壁残留毛刺的变化规律。从理论角度引入了已加工表面的形成机理,建立了微观表面粗糙度理论模型,提出了刀具跳动对侧壁形貌变化影响的规律。利用三轴联动精密微细铣削机床加工微细直沟槽,并选取主轴转速、轴向切深、进给速度、刀具跳动量和材料组织结构为研究因素。采用多因素正交实验和极差分析法,对表面粗糙度值进行数值分析。铝合金,钢和钛合金三类微沟槽底面对应的最佳表面粗糙度值变化范围分别为1.073~1.481μm,0.485~0.883μm,0.235~0.267μm;无刀具跳动钛合金微沟槽壁毛刺的最大高度为7.637μm,而当刀具存在0.3μm的径向综合跳动量时对应的微槽壁毛刺的最大高度为21.79μm。铣削参数对表面粗糙度值的影响按从大到小依次为进给速度、主轴转速、轴向切深,且随着进给速度和轴向切深的增大,表面粗糙度值增大;随着主轴转速的增大,表面粗糙度值先减小后增大;在相同加工条件下,若微圆弧刀刃无磨损,微刀具的跳动量对微直沟槽侧壁表面质量有较大影响。同时,不同金属材料特性也是影响微沟槽表面质量的潜在因素。
        In order to improve the surface quality of micro machined parts,micro milling experiments were designed to study the variations of surface roughness and sidewall residual burrs of micro grooves.First,from a theoretical point of view,the model of processed surface formation and micro machined surface roughness theory were introduced for the purpose of proposing changes to the sidewall for tool run-out.Then,typical parts were selected to process the micro straight grooves by the developed 3-axis linkage micro milling machine tool;the spindle speed,axial cutting depth,feed speed,tool run-out,and material organization structure on surface roughness were studied in depth.Finally,the milling surface roughness of the grooves was researched by adopting multiple factor orthogonal tests and analysis of extreme difference.The best surface roughness values for the three kinds of micro grooved bottoms made of aluminum alloy,steel,and titanium alloy are determined as1.073-1.481μm,0.485-0.883μm,and 0.235-0.267μm,respectively.Without tool run out,the maximum height of the micro groove wall burr is found as 7.637μm,and the maximum height of the micro-groove wall burr is found to be 21.79μm when the tool has a radial composite runout of 0.3μm.The experimental results show that the parameters are listed in the effective order given below:feed rate,spindle speed,and axial cutting depth.With the gradually increasing feed speed and axial cutting depth,the surface roughness Ra of the groove bottom gradually increased.However,increasing the spindle speed caused Ra to decrease and then increase.Under the same conditions,if the arc blades are without wear,the tool run-out on the micro straight groove sidewall surface quality has a greater impact.At the same time,different metal material properties are also potential factors affecting the surface quality of the micro channels.
引文
[1] THEPSONTHI T,ZEL T.An integrated toolpath and process parameter optimization for highperformance micro-milling process of Ti6Al4V titanium alloy[J].International Journal of Advanced Manufacturing Technology,2014,75(1):57-75.
    [2]李红涛,来新民,李成锋,等.介观尺度微型铣床开发及性能试验[J].机械工程学报,2006,42(11):162-167.LI H T,LAI X M,LI CH F,et al..Development and performance test of meso-scale micro milling machine[J].Journal of Mechanical Engineering,2006,42(11):162-167.(in Chinese)
    [3]孙亚洲,梁迎春,程凯.微米和中间尺度机械制造[J].机械工程学报,2004,40(5):1-6.SUN Y ZH,LIANG Y CH,CHENG K.Micron and intermediate scale mechanical manufacturing[J].Journal of Mechanical Engineering,2004,40(5):1-6.(in Chinese)
    [4]巩亚东,张金峰,张永振,等.微尺度高铣削表面质量的实验研究[J].机械工程学报,2013,49(13):190-198.GONG Y D,ZHANG J F,ZHANG Y ZH,et al..Experimental research on surface quality in the process of high-speed and micro-scale milling[J].Journal of Mechanical Engineering,2013,49(13):190-198.(in Chinese)
    [5] TAKCS M,VERB,MSZROS I.Micromilling of metallic materials[J].Journal of Materials Processing Technology,2003,138(1):152-155.
    [6] WANG W,KWEON S H,YANG S H.A study on roughness of the micro-end-milled surface produced by a miniatured machine tool[J].Journal of Materials Processing Technology,2005,162(20):702-708.
    [7] DORNFELD D,MIN S,TAKEUCHI Y.Recent advances in mechanical micromachining[J].CIRP Annals,2006,55(2):745-768.
    [8]何宁,曹自洋,李亮.微细铣削表面粗糙度实验研究[J].机械科学与技术,2011,30(5):785-788.HE N,CAO Z Y,LI L.Experimental study of the surface roughness in micro-milling[J].Mechanical Science and Technology for Aerospace Engineering,2011,30(5):785-788.(in Chinese)
    [9]黄昆涛,房丰洲,宫虎.超精密车削表面微观形貌对光学特性的影响[J].光学精密工程,2013,21(1):101-107.HUANG K T,FANG F ZH,GONG H.Effect of surface microscopic topology generated by ultra-precision turning on optical characteristics[J].Opt.Precision Eng.,2013,21(1):101-107.(in Chinese)
    [10]段春争,郝清龙.45钢高速铣削表面粗糙度预测[J].哈尔滨工程大学学报,2015,36(9):1229-1233.DUAN CH ZH,HAO Q L.Surface roughness prediction in high speed milling of 45steel[J].Journal of Harbin Engineering University,2015,36(9):1229-1233.(in Chinese)
    [11]毕果,孙郅佶,张剑锋,等.超精密切削加工表面粗糙度影响因素的实验[J].光学精密工程,2015,23(10):266-271.BI G,SUN ZH J,ZHANG J F,et al..Experiment on main factors affecting surface roughness in ultra-precision fly cutting[J].Opt.Precision Eng.,2015,23(10):266-271.(in Chinese)
    [12]刘婷,徐宗伟,曹克雄,等.微铣削切削力特性及表面质量的实验研究[J].纳米技术与精密工程,2015,13(4):258-263.LIU T,XU Z W,CAO K X,et al..Experimental research on cutting force characteristics and surface quality in micro-milling[J].Nanotechnology and Precision Engineering,2015,13(4):258-263.(in Chinese)
    [13] MALEKIAN M,MOSTOFA M G,PARK S S,et al..Modeling of minimum uncut chip thickness in micro machining of aluminum[J].Journal of Materials Processing Technology,2012,212(3):553-559.
    [14]石文天.微细切削技术[M].北京:机械工业出版社,2011.SHI W T.Micro Cutting Technology[M].Beijing:China Machine Press,2011.(in Chinese)
    [15]吴继华,史振宇.基于应变梯度理论的正交微车削中最小切削厚度预测[J].中国机械工程,2009,20(18):2227-2230,2247.WU J H,SHI ZH Y.Minimum chip thickness in orthogonal micro-cutting based on plasticity strain gradient theory[J].Journal of Mechanical Engineering,2009,20(18):2227-2230,2247.(in Chinese)
    [16] DUAN C Z,HAO Q L.Surface roughness prediction of end milling process based on IPSO-LSSVM[J].Journal of Advanced Mechanical Design,Systems and Manufacturing,2014,8(3):24.
    [17]张欣欣,于化东,许金凯,等.高速微铣削铝合金铣削力与表面粗糙度的研究[J].组合机床与自动化技术,2015,56(7):46-49.ZHANG X X,YU H D,XU J K,et al..The research on milling force and surface roughness of high speed micro-milling aluminum alloy[J].Modular Machine Tool and Automatic Manufacturing Technique,2015,56(7):46-49.(in Chinese)
    [18] SHAW M C.Metal Cutting Principles(Second Edition)[M].New York:Oxford University Press,2005.
    [19] LI H Z,LIU K,LI X P.A new method for determining the undeformed chip thickness in milling[J].Journal of Materials Processing Technology,2001,113(1):378-384.
    [20]杨振朝,张定华,姚倡锋,等.TC4钛合金高速铣削参数对表面完整性影响研究[J].西北工业大学学报,2009,27(4):538-543.YANG ZH CH,ZHANG D H,YAO C F,et al..Effect of high speed milling parameters on surface integrity of TC4titanium alloy[J].Journal of Northwestern Polytechnical University,2009,27(4):538-543.(in Chinese)
    [21]杨后川,杨保生,杜晓伟,等.钛合金TB6铣削表面粗糙度与表面缺陷研究[J].航空制造技术,2017,59(5):60-66,71.YANG H CH,YANG B SH,DU X W,et al..Research on surface roughness and defect of TB6Titanium Alloy during milling[J].Aeronautical Manufacturing Technology,2017,59(5):60-66,71.(in Chinese)
    [22]常文春,易湘斌,李宝栋,等.高速铣削TB6钛合金切削力和表面粗糙度预测模型[J].制造技术与机床,2017,66(4):102-107.CHANG W CH,YI X B,LI B L,et al..Prediction model of cutting force and surface roughness in high-speed milling TB6titanium alloy[J].Manufacturing Technology and Machine Tool,2017,66(4):102-107.(in Chinese)
    [23]康小健.高速铣削45钢铣削力及表面质量研究[D].湘潭:湖南科技大学,2012.KANG X J.Research on milling force and surface quality of high speed milling of 45 steel[D].Xiangtan:Hunan University of Science and Technology,2012.(in Chinese)
    [24]张运建,秦国华,侯源君,等.高速切削钛合金TC4的表面粗糙度预测与控制方法[J].光学精密工程,2016,24(10):543-550.ZHANG Y J,QIN G H,HOU Y J,et al..Prediction and Control of Surface Roughness for High Speed Machining of Titanium Alloy TC4[J].Opt.Precision Eng.,2016,24(10):543-550.(in Chinese)
    [25]苏荣环.微尺度铣磨加工表面质量控制方法的研究[D].沈阳:东北大学,2010.SU R H.Research on micro milling-grinding process surface quality control methods[D].Shenyang:Northeastern University,2010.(in Chinese)
    [26]弯艳玲,张学蕊,于化东,等.高速微铣削铝合金表面粗糙度的多指标正交试验研究[J].中国机械工程,2013,24(24):3278-3282,3288.WAN Y L,ZHANG X R,YU H D,et al..An multi-index orthogonal test study of aluminum alloy surface roughness using high speed micro-milling process[J].China Mechanical Engineering,2013,24(24):3278-3282,3288.(in Chinese)
    [27]史振宇.基于最小切除厚度的微切削加工机理研究[D].济南:山东大学,2011.SHI ZH Y.Study on micro cutting mechanism based on minimum uncut chip thickness[D].Jinan:Shandong University,2011.(in Chinese)
    [28]曹志强,赵继,陈德祥,等.硅晶片的液流悬浮超光滑加工机理与实验[J].光学精密工程,2007,15(7):1084-1089.CAO ZH Q,ZHAO J,CHEN D X,et al..Theory and experiment on hydrodynamic suspension ultra smooth machining for silicon wafers[J].Opt.Precision Eng.,2007,15(7):1084-1089.(in Chinese)
    [29]杨舒,许金凯,李小舟,等.高速微铣削Al2O3工程陶瓷工艺参数试验研究[J].机床组合与自动化加工技术,2014,55(9):123-126.YANG SH,XU J K,LI X Z,et al..Experimental study on process parameters of high-speed micro-milling Al2O3engineering ceramics[J].Modular Machine Tool and Automatic Manufacturing Technique,2014(9):123-126.(in Chinese)
    [30]饶小双,张飞虎,刘立飞,等.电火花机械复合磨削反应烧结SiC陶瓷的表面特征[J].光学精密工程,2016,24(9):2192-2199.RAO X SH,ZHANG F H,LIU L F,et al..Surface characteristics for RB-SiC ceramics by electrical discharge diamond griding[J].Opt.Precision Eng.,2016,24(9):2192-219.(in Chinese)
    [31]马利杰,王西彬,李勇峰,等.直槽微铣削中切削参数对铣刀跳动量的影响[J].机械工程学报,2014,50(9):201-206.MA L J,WANG X B,LI Y F,et al..Influence of cutting parameters on milling cutter runout in micro-end-milling straight groove[J].Journal of Mechanical Engineering,2014,50(9):201-206.(in Chinese)
    [32]聂强,黄凯,毕庆贞,等.微铣削中考虑刀具跳动的瞬时切厚解析计算方法[J].机械工程学报,2016,52(3):169-178.NIE Q,HUANG K,BI Q ZH,et al..New Mathematic method of calculating instantaneous un-deformed chip with tool run-out in micro-endmilling thickness with tool run-out in micro-endmilling[J].Journal of Mechanical Engineering,2016,52(3):169-178.(in Chinese)
    [33]陈明君,陈妮,何宁,等.铣削加工机理研究新进展[J].机械工程学报,2014,50(5):161-172.CHEN M J,CHEN N,HE N,et al..The research progress of micro-milling in machining mechanism[J].Journal of Mechanical Engineering,2014,50(5):161-172.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700