用户名: 密码: 验证码:
BRB水平力分担率对高层屈曲约束支撑钢框架抗震性能影响研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of BRB horizontal force sharing rate on seismic behavior of high-rise buckling restrained braced steel frames
  • 作者:曹邕生 ; 包恩和
  • 英文作者:CAO Yongsheng;BAO Enhe;College of Civil Engineering, Guangzhou University;College of Civil & Construction Engineering, Guilin University of Technology;
  • 关键词:屈曲约束支撑 ; BRB水平力分担率 ; 抗震性能 ; 弹塑性静力分析 ; 弹塑性时程分析
  • 英文关键词:buckling restrained brace;;BRB horizontal force sharing rate;;seismic behavior;;elasto-plastic static analysis;;elasto-plastic time history analysis
  • 中文刊名:DGGC
  • 英文刊名:Earthquake Engineering and Engineering Dynamics
  • 机构:广州大学土木工程学院;桂林理工大学土木与建筑工程学院;
  • 出版日期:2019-06-15
  • 出版单位:地震工程与工程振动
  • 年:2019
  • 期:v.39
  • 基金:广州大学研究生创新研究资助计划(2018GDJC-D15)~~
  • 语种:中文;
  • 页:DGGC201903020
  • 页数:10
  • CN:03
  • ISSN:23-1157/P
  • 分类号:197-206
摘要
本文按照结构刚度相近、重量相近的思路设计了5组BRB水平力分担率β分别为20%、30%、40%、50%和60%的高层屈曲约束支撑钢框架结构模型,并对模型进行弹塑性静力推覆分析及弹塑性时程分析,研究BRB水平力分担率β对高层屈曲约束支撑钢框架抗震性能的影响。研究结果表明:(1)β=20%的结构,BRB屈服早,承载力较小,滞回耗能效果有限;β=30%~40%的结构,BRB屈服早,承载力较大,滞回耗能性能好;β=50%~60%的结构,BRB承载力大,下部楼层BRB屈服较早,滞回性能好,上部楼层BRB屈服晚,滞回性能差。(2)当结构层间位移角未超过1/50时,层间位移较大区域主要在中间楼层或中低部楼层。当结构层间位移角超过1/50时,高β值结构的下部楼层刚度迅速下降,变形增大明显。(3)罕遇地震下,随着结构β值的升高,结构上部楼层、中间楼层BRB的延性比μ及塑性延性比η会出现不同程度的下降,β值越大,楼层越高,下降越明显,而不同β值的结构下部楼层BRB的μ及η变幅较小。(4)对于高层BRB钢框架结构,工程中建议将BRB的水平率分担率β设计为30%~40%。
        In order to study the influence of BRB horizontal force sharing rate on the seismic behavior of high-rise buckling restrained braced steel frames, five high rise buckling restrained braced steel frames with BRB horizontal force sharing ratio β of 20%, 30%, 40%, 50% and 60%, respectively, are designed in accordance with the idea of similar stiffness and close weight of each structure. And elasto-plastic static analysis and time history analysis were performed on the model. The results of the study show that: First, The BRB with β of 20% installed in structures has smaller bearing capacity and limited energy dissipation effect. The BRB with β of 30% to 40% installed in structures has larger bearing capacity and well performance of hysteretic energy dissipation. The BRB with β of 50% to 60% installed in structures has large bearing capacity, and the BRB installed in lower stories yield earlier, but has better performance of hysteretic energy dissipation compared to the BRB installed in taller stories. Second, when the inter-story displacement angle of the structure is less than 1/50, the larger inter-story displacement is mainly in the middle or low-middle story. When the inter-story displacement angle of the structure is more than 1/50, stiffness decreases rapidly and deformation increases rapidly at low-rise of the structure with big value ofβ. Third, under infrequent earthquake, with the increase of β of the structure, the ductility ratio μ and the accumulated plastic ductility ratio η of BRB in the high rise and middle rise of the structures will decrease in varying degrees. The higher the β and the higher the floor, the more apparent the decrease is. And there is little variation of μ and η of BRB installed in lower stories with the bigger value of β and the higher height. Fourth, it is suggested that the horizontal force sharing ratio β is designed to be 30%-40% for high-rise BRB steel frame structure.
引文
[1] 张小连.高层建筑钢结构体系中竖向荷载的P-Δ效应研究[D].杭州:浙江大学,2011.ZHANG Xiaolian.Studies on the P-Δ effect of the vertical loads on high-rise steel structures[D].Hangzhou:Zhejiang University,2011.(in Chinese)
    [2] Architectural Institute of Japan.Recommended provisions for seismic damping systems applied to steel structures[M].Tokyo:Maruzen-publishing CO.,LTD,2015.
    [3] A Seismic Provision for Structural Steel Buildings[S].California:American Institute of Steel Construction Inc.2002.
    [4] Choi H,Kim J,Chung L.Seismic design of bucking restrained braced frames based on a modified energy-balance concept[J].Canadian Journal of Civil Engineering,2006,33(10):1251-1260.
    [5] Choi H,Kim J.Energy-based seismic design of bucking restrained braced frames using hysteretic energy spectrum[J].Engineering Structures,2006,28(2):304-311.
    [6] JGJ 297-2013消能减震技术规程[S].北京:中国建筑工业出版社,2013.JGJ 297-2013 Technical Specification for Seismic Energy Dissipation of Buildings[S].Beijing:China Architecture & Building Press,2013.(in Chinese)
    [7] 孙爱伏,欧进萍.高层钢结构抗震pushover分析的侧向力分布模式及其影响[J].地震工程与工程振动,2008,28(4):88-93.SUN Aifu,OU Jinping.Lateral action patterns and their effects on pushover[J].Earthquake Engineering and Engineering Dynamics,2008,28(4):88-93.(in Chinese)
    [8] Ogawa K,Tada M.Combined non-linear analysis for plane frame (“clap”) [C]//Architectural Institute of Japan.Proc.of 17th Symposium on Computer Technology on Information Systems and Applications.Tokyo:Showa intelligence Press,1994:79-84.
    [9] GB50011-2010建筑抗震设计规范[S].北京:中国建筑工业出版社,2010.GB50011-2010 Code for Seismic Design of Buildings [S].Beijing:Building Industry Press of China,2010.(in Chinese)
    [10] Akkar S,Ozen O.Effect of peak ground velocity on deformation demands for SDOF systems[J].Earthquake Engineering and Structure Dynamics.2005.34:1551-1571.
    [11] 叶列平,马千里,缪志伟.结构抗震分析用地震动强度指标的研究[J].地震工程与工程振动,2009,29(4):9-22.YE Lieping,MA Qianli,LIAO Zhiwei.Study on earthquake intensities for seismic analysis of structures[J].Earthquake Engineering and Engineering Dynamics,2009,29(4):9-22.(in Chinese)
    [12] 建築構造設計指針[S].文部科学省大臣官房文教施設企画部,2014.Recommendations for Design of Buildings[S].Ministry of Education,Culture,Sports,Science and Technology,2014.(in Japanese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700