用户名: 密码: 验证码:
渝东南—黔北地区牛蹄塘组页岩微纳米级孔隙发育特征及主控因素分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analyses of the characteristics and main controlling factors for the micro/nanopores in Niutitang shale from China's southeastern Chongqing and northern Guizhou regions
  • 作者:曾维特 ; 丁文龙 ; 张金川 ; 李玉喜 ; 王濡岳 ; 久凯
  • 英文作者:ZENG Weite;DING Wenlong;ZHANG Jinchuan;LI Yuxi;WANG Ruyue;JIU Kai;Hainan Bureau of Geology;College of Marine Geosciences,Ocean University of China;Hainan Geological Survey;Hainan Key Laboratory of Marine Geology Resources and Environment;School of Energy Resources,China University of Geosciences(Beijing);Ministry of Education Key Laboratory for Marine Reservoir Evolution and Hydrocarbon Abundance Mechanism,China University of Geosciences(Beijing);Ministry of Natural Resources Key Laboratory for Shale Gas Exploration and Assessment,China University of Geosciences(Beijing);Mineral Resources and Reserves Center,Ministry of Natural Resources;Petroleum Exploration and Production Research Institute,SINOPEC;Beijing Jingneng Petroleum &Gas Resources Co.,Ltd;
  • 关键词:渝东南—黔北 ; 牛蹄塘组 ; 页岩孔隙 ; 微纳米级 ; 发育特征 ; 主控因素
  • 英文关键词:southeastern Chongqing and northern Guizhou;;Niutitang Formation;;shale pore;;micro/nano scale;;characteristics;;controlling factors
  • 中文刊名:DXQY
  • 英文刊名:Earth Science Frontiers
  • 机构:海南省地质局;中国海洋大学海洋地球科学学院;海南省地质调查院;海南省海洋地质资源与环境重点实验室;中国地质大学(北京)能源学院;中国地质大学(北京)海相储层演化与油气富集机理教育部重点实验室;中国地质大学(北京)页岩气勘查与评价自然资源部重点实验室;自然资源部油气资源战略研究中心;中国石油化工股份有限公司石油勘探开发研究院;北京京能油气资源开发有限公司;
  • 出版日期:2018-10-30 10:39
  • 出版单位:地学前缘
  • 年:2019
  • 期:v.26;No.137
  • 基金:国家自然科学基金项目(41272167,40672087,41372139,41072098);; 国家科技重大专项专题(2016ZX05046-003,2011ZX05018-001-002,2011ZX05009-002-205);; 海南省博士后面上资助项目
  • 语种:中文;
  • 页:DXQY201903031
  • 页数:16
  • CN:03
  • ISSN:11-3370/P
  • 分类号:228-243
摘要
以渝东南—黔北地区牛蹄塘组页岩岩心及野外新鲜露头样品为研究对象,运用低温液氮吸附实验和氩离子抛光扫描电镜观察,划分页岩微纳米级孔隙类型,并对其发育程度和形态结构进行定量表征,结合页岩样品地球化学测试数据,明确页岩微观孔隙发育主控因素,试图建立微纳米级孔隙发育程度与主控因素定性或半定量关系。结果表明:研究区牛蹄塘组页岩微纳米级孔隙分为有机孔、无机孔和微裂缝3大类,包括7个亚类。有机质粒内孔结构特征为球状、细瓶颈状和墨水瓶状,无机孔主要为串珠状、球状和楔状,微裂缝呈四方开口的平行板状、夹板状。有机质粒内孔、矿物粒间孔和微裂缝为主要孔隙类型,且具有较好连通性,可作为页岩气赋存空间和渗流通道。页岩孔隙以中孔为主,其次为宏孔,孔隙直径分布范围主要在1~50nm。比表面积主要由孔径≤5nm孔隙所提供,页岩孔隙孔径越小,对比表面积贡献越大,越有利于页岩气吸附聚集,随着孔隙体积的增加,比表面积不断增加。有机碳含量是控制页岩微纳米级孔隙发育和比表面积的最重要内因,特别体现在对微孔和中孔发育的控制上;黏土矿物含量增加能增强页岩吸附能力,但对孔隙体积和比表面积主控作用不明显;脆性矿物含量主要控制宏孔发育,对页岩吸附的贡献可以忽略;热演化程度过低或过高均不利于有机质孔隙的发育,微纳米孔隙体积随着成熟度增加呈现出先增后减的趋势,对于高过成熟页岩,不同干酪根类型的有机质孔隙发育程度和比表面积大小次序为Ⅰ型>Ⅱ型>Ⅲ型。
        We performed nitrogen adsorption isotherm and scanning electron microscopy(SEM)analyses on core and fresh outcrop samples of Niutitang shale from the southeastern Chongqing-northern Guizhou region,which allow us to classify the micro/nano scale pore types and quantify the pores developmental stages and morphological structures.In addition,we carried out qualitative or semi-quantitative geochemical analysis on the controlling factors for the micro/nanopore development.The results show that the micro/nano scale pores in Niutitang shale can be divided into 3 types(including 7 subtypes):organic and inorganic pores and micro fracture.Structurally,the organic pore features spherical fine neck and ink bottle,the inorganic pore has bead,sphere and wedge features,and the micro fractures develops parallel plates with four-side opening and splint structures.The organic and intergranular pores and micro fracture are the main pore types,which could serve as storage space and seepage channels for shale gas with good connectivity.Shale pores are dominated by mesopores,followed by macropores,with pore diameters ranging from 1 to50 nm.The specific surface area(SSA)is mainly provided by nanopores with diameters less than 5 nm,so that smaller pores make greater contribution to SSA and are more favorable for shale gas adsorption and accumulation,while SSA increases with increasing total pore volume.Our study further show that organic carbon content is the most important internal factor for controlling micro/nanopore development and SSA,particularly in controlling micro and mesopores.Moreover,increasing clay mineral content could enhance shale adsorption capacity,however,its controlling effect on pore volume and SSA is not obvious.The brittle mineral content mainly controls macropore development with negligible contribution to shale adsorption.For high and post mature shale,the order of organic pore development and specific surface area is type Ⅰ>typeⅡ>typeⅢfor different kerogen types.
引文
[1]CURTIS J B.Fractured shale-gas systems[J].AAPG Bulletin,2002,86(11):1921-1938.
    [2]张金川,金之钧,袁明生.页岩气成藏机理和分布[J].天然气工业,2004,24(7):15-18.
    [3]JARVIE M D,HILL J R,POLLASTRO M R.Assessment of the gas potential and yields from shales:the Barnett shale model[C]∥Proceedings of Unconventional Energy Resources in the Southern Mid-Continent Conference.Oklahoma,2004,110:34.
    [4]JARVIE M D,HILL J R,RUBLE T E,et al.Unconventional shale-gas system:the Mississippian Barnett shale gas of North-Central Texas as one model for thermogenic shalegas assessment[J].AAPG Bulletin,2007,91(4):475-499.
    [5]JARVIE M D.Unconventional shale resource plays shale gas as and shale-oil opportunities[R].Fort Worth Texas,USA:Christian University Worldwide Geochemistry,2008:1-38.
    [6]刘树根,曾祥亮,黄文明,等.四川盆地页岩气藏和连续型非连续型气藏基本特征[J].成都理工大学学报(自然科学版),2009,36(6):578-592.
    [7]GALE J F W,LAUBACH S E,OLSON J E,et al.Natural fractures in shale:a review and new observations[J].AAPGBulletin,2014,98(11):2165-2216.
    [8]BROWNING J,TINKER S W,IKONNIKOVA S,et al.Study develops Fayetteville shale reserves,production forecast[J].Oil&Gas Journal,2014,112(1):64-73.
    [9]王濡岳,丁文龙,龚大建,等.渝东南-黔北地区下寒武统牛蹄塘组页岩裂缝发育特征与主控因素[J].石油学报,2016,37(7):832-845.
    [10]张金川,杨超,陈前,等.中国潜质页岩形成和分布[J].地学前缘,2016,23(1):74-86.
    [11]APAYDIN O,OZKAN E,RAGHAVAN R.Effect of discontinuous microfractures on ultratight matrix permeability of a dual-porosity medium[J].SPE Reservoir Evaluation&Engineering,2012,15(4):473-485.
    [12]CHO Y,OZKAN E,APAYDIN O G.Pressure-dependent natural-fracture permeability in shale and its effect on shalegas well production[J].SPE Reservoir Evaluation&Engineering,2012,16(2):216-228.
    [13]郭彤楼.涪陵页岩气田发现的启示与思考[J].地学前缘,2016,23(1):29-43.
    [14]何治亮,胡宗全,聂海宽,等.四川盆地五峰组-龙马溪组页岩气富集特征与“建造改造”评价思路[J].天然气地球科学,2017,28(5):724-733.
    [15]王明飞,苏克露,肖伟,等.泥页岩应力场约束的叠后地震裂缝预测技术:以焦石坝区块五峰组-龙马溪组一段为例[J].石油与天然气地质,2018,39(1):198-206.
    [16]冷济高,龚大建,李飞,等.黔东北地区牛蹄塘组页岩气勘探前景分析[J].地学前缘,2016,23(2):29-38.
    [17]陈尚斌,朱炎铭,王红岩,等.川南龙马溪组页岩气储层纳米孔隙结构特征及其成藏意义[J].煤炭学报,2012,37(3):438-444.
    [18]赵佩,李贤庆,田兴旺,等.川南地区龙马溪组页岩气储层微孔隙结构特征[J].天然气地球科学,2014,25(6):947-956.
    [19]ZENG W,ZHANG J,DING W,et al.Fracture development in Paleozoic shale of Chongqing area(South China).Part one:fracture characteristics and comparative analysis of main controlling factors[J].Journal of Asian Earth Sciences,2013,75(8):251-266.
    [20]叶玥豪,刘树根,孙玮,等.上扬子地区上震旦统-下志留统黑色页岩微孔隙特征[J].成都理工大学学报(自然科学版),2012,39(6):575-582.
    [21]蒋裕强,董大忠,漆麟,等.页岩气储层的基本特征及其评价[J].天然气工业,2010,30(10):7-12.
    [22]郭少斌,黄磊.页岩气储层含气性影响因素及储层评价:以上扬子古生界页岩气储层为例[J].石油实验地质,2013,35(6):601-606.
    [23]张腾,张烈辉,唐洪明,等.页岩孔隙整合化表征方法:以四川盆地下志留统龙马溪组为例[J].天然气工业,2015,35(12):1-8.
    [24]李娟,于炳松,张金川,等.黔北地区下寒武统黑色页岩储层特征及其影响因素[J].石油与天然气地质,2012,33(3):364-374.
    [25]LI Y,FAN T,ZHANG J,et al.Geochemical changes in the Early Cambrian interval of the Yangtze Platform,South China:implications for hydrothermal influences and paleocean redox conditions[J].Journal of Asian Earth Sciences,2015,109:100-123.
    [26]王濡岳,龚大建,冷济高,等.黔北地区下寒武统牛蹄塘组页岩储层发育特征:以岑巩区块为例[J].地学前缘,2017,24(6):286-299.
    [27]王濡岳,龚大建,丁文龙,等.上扬子地区下寒武统牛蹄塘组页岩储层脆性评价:以贵州岑巩区块为例[J].地学前缘,2016,23(1):87-95.
    [28]四川省地质矿产局.四川省区域地质志[M].北京:地质出版社,1991:13-700.
    [29]文玲,胡书毅,田海芹.扬子地区寒武系烃源岩研究[J].西北地质,2001,34(2):67-74.
    [30]LOUCKS R G,REED R M,RUPPEL S C,et al.Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores[J].AAPGBulletin,2012,96(6):1071-1098.
    [31]SLATT R M,O'BRIEN N R.Pore types in the Barnett and Woodford gas shales:contribution to understanding gas storage and migration pathways in fine-grained rocks[J].AAPGBulletin,2011,95(12):2017-2030.
    [32]于炳松.页岩气储层孔隙分类与表征[J].地学前缘,2013,20(4):211-220.
    [33]LOUCKS R G,REED R M,RUPPEL S C,et al.Morphology,genesis,and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale[J].Journal of Sedimentary Research,2009,79(12):848-861.
    [34]AMBROSE R J,HARTMAN R C,DIAZ-CAMPOS M,et al.New pore-scale considerations for shale gas in place calculations[C]∥Proceedings of Society of Petroleum Engineers Unconventional Gas Conference.Pennsylvania,2010:23-25.
    [35]SONDERGELD C H,AMBROSE R J,RAI C S,et al.Microstructural studies of gas shales[C]∥Proceedings of Society of Petroleum Engineers Unconventional Gas Conference.Pennsylvania,2010:1-25.
    [36]SCHIEBER J.Common themes in the formation and preservation of porosity in shales and mudstones:illustrated with examples across the Phanerozoic[C]∥Proceedings of Society of Petroleum Engineers Unconventional Gas Conference.Pennsylvania,2010:23-25.
    [37]聂海宽,边瑞康,张培先,等.川东南地区下古生界页岩储层微观类型与特征及其对含气量的影响[J].地学前缘,2014,21(4):331-343.
    [38]王濡岳,胡宗全,刘敬寿,等.中国南方海相与陆相页岩裂缝发育特征及主控因素对比:以黔北岑巩地区下寒武统为例[J].石油与天然气地质,2018,39(4):631-640.
    [39]丁文龙,许长春,久凯,等.泥页岩裂缝研究进展[J].地球科学进展,2011,26(2):135-144.
    [40]JIU K,DING W L,HUANG W H,et al.Fractures of lacustrine shale reservoirs,the Zhanhua Depression in the Bohai Bay Basin,eastern China[J].Marine and Petroleum Geology,2013,48:113-123.
    [41]ZENG W,DING W,ZHANG J,et al.Fracture development in Paleozoic shale of Chongqing area(South China).Part two:numerical simulation of tectonic stress field and prediction of fractures distribution[J].Journal of Asian Earth Sciences,2013,75(8):267-279.
    [42]DING W L,FAN T L,YU B S,et al.Ordovician carbonate reservoir fracture characteristics and fracture distribution forecasting in the Tazhong area of Tarim Basin,Northwest China[J].Journal of Petroleum Science and Engineering,2012,86(87):62-70.
    [43]赵振宇,郭彦如,顾家裕,等.不同成岩期泥质岩非构造裂缝发育规律,形成机理及其地质意义[J].沉积学报,2013,31(1):38-49.
    [44]郭璇,钟建华,徐小林,等.非构造裂缝的发育特征及成因机制[J].中国石油大学学报(自然科学版),2004,28(2):6-11.
    [45]赵振宇,周瑶琪,马晓鸣.泥岩非构造裂缝与现代水下收缩裂缝相似性研究[J].西安石油大学学报(自然科学版),2008,23(3):6-11.
    [46]BROEKHOFF J C P,DE BOER J H.Studies on pore systems in catalysts:XIII.Pore distributions from the desorption branch of a nitrogen sorption isotherm in the case of cylindrical pores[J].Journal of Catalysis,1968,10(4):377-390.
    [47]ROUQUEROL J,AVNIR D,FAIRBRIDGE C W,et al.Recommendations for the characterization of porous solids[J].Pure and Applied Chemistry,1994,66(8):1739-1758.
    [48]DANIEL M J,RONALD J H,TIM E R,et al.Unconventional shale-gas systems:the Mississippian Barnett shale of north-central Texas as one model for thermogenic shale-gas assessment[J].AAPG Bulletin,2007,91(4):475-499.
    [49]MILLIKEN K L,RUDNICKI M,AWWILLER D N,et al.Organic matter-hosted pore system,Marcellus Formation(Devonian),Pennsylvania[J].AAPG Bulletin,2013,97(2):177-200.
    [50]张建坤,何生,颜新林,等.页岩纳米级孔隙结构特征及热成熟演化[J].中国石油大学学报(自然科学版),2017,41(1):11-24.
    [51]CHALMERS G R L,BUSTIN R M.Lower Cretaceous gas shales in northeastern British Columbia,Part I:geological controls on methane sorption capacity[J].Bulletin of Canadian Petroleum Geology,2008,56(1):1-21.
    [52]ZHANG T,ELLIS G S,RUPPEL S C,et al.Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems[J].Organic Geochemistry,2012,47(6):120-131.
    [53]张廷山,杨洋,龚其森,等.四川盆地南部早古生代海相页岩微观孔隙特征及发育控制因素[J].地质学报,2014,88(9):1728-1740.
    [54]BARKER C.Calculated volume and pressure changes during the thermal cracking of oil to gas in reservoirs[J].AAPGBulletin,1990,74(8):1254-1261.
    [55]TIAN H,XIAO X M,WILKINS R W T,et al.New insights into the volume and pressure changes during the thermal cracking of oil to gas in reservoirs:for the in-situ accumulation of gas cracked from oils[J].AAPG Bulletin,2008,92(2):181-200.
    [56]赵文智,王兆云,张水昌,等.有机质“接力成气”模式的提出及其在勘探中的意义[J].石油勘探与开发,2005,32(2):1-7.
    [57]赵杏媛,何东博.黏土矿物与页岩气[J].新疆石油地质,2012(6):643-647.
    [58]KENNEDY M J,PEVEAR D R,HILL R J.Mineral surface control of organic carbon in black shale[J].Science,2002,295(5555):657-660.
    [59]JI L,ZHANG T,MILLIKEN K L,et al.Experimental investigation of main controls to methane adsorption in clayrich rocks[J].Applied Geochemistry,2012,27(12):2533-2545.
    [60]LIU D,YUAN P,LIU H,et al.High-pressure adsorption of methane on montmorillonite,kaolinite and illite[J].Applied Clay Science,2013,85(1):25-30.
    [61]GASPARIK M,BERTIER P,GENSTERBLUM Y,et al.Geological controls on the methane storage capacity in organic-rich shales[J].International Journal of Coal Geology,2014,123(2):34-51.
    [62]吴朝东,陈其英,雷家锦.湘西震旦-寒武纪黑色岩系的有机岩石学特征及其形成条件[J].岩石学报,1999,15(3):453-462.
    [63]梁狄刚,郭彤楼,陈建平,等.中国南方海相生烃成藏研究的若干新进展(二):南方四套区域性海相烃源岩的地球化学特征[J].海相油气地质,2009,14(1):1-15.
    [64]聂海宽,张金川,李玉喜.四川盆地及其周缘下寒武统页岩气聚集条件[J].石油学报,2011,32(6):959-967.
    [65]CURTIS M E,CARDOTT B J,SONDERGELD C H,et al.Development of organic porosity in the Woodford shale with increasing thermal maturity[J].International Journal of Coal Geology,2012,103(23):26-31.
    [66]BERNARD S,HORSFIELD B,SCHULZ H M,et al.Geochemical evolution of organic-rich shales with increasing maturity:a STXM and TEM study of the Posidonia Shale(Lower Toarcian,northern Germany)[J].Marine&Petroleum Geology,2012,31(1):70-89.
    [67]TIWARI P,DEO M,LIN C L,et al.Characterization of oil shale pore structure before and after pyrolysis by using X-ray micro CT[J].Fuel,2013,107(9):547-554.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700