用户名: 密码: 验证码:
好氧条件下铬污染土壤中Cr(Ⅵ)的土著微生物还原(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cr(Ⅵ) reduction in chromium-contaminated soil by indigenous microorganisms under aerobic condition
  • 作者:苏长青 ; 李立清 ; 杨志辉 ; 柴立元 ; 廖骐 ; 石岩 ; 黎佳未
  • 英文作者:Chang-qing SU;Li-qing LI;Zhi-hui YANG;Li-yuan CHAI;Qi LIAO;Yan SHI;Jia-wei LI;School of Energy Science and Engineering, Central South University;Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution,Central South University;School of Metallurgy and Environment, Central South University;
  • 关键词:Cr(VI)污染土壤 ; 土著微生物 ; 微生物修复 ; 动力学
  • 英文关键词:Cr(Ⅵ)-contaminated soil;;indigenous microorganisms;;microremediation;;kinetics
  • 中文刊名:ZYSY
  • 英文刊名:中国有色金属学报(英文版)
  • 机构:中南大学能源科学与工程学院;中南大学国家重金属污染防治工程技术研究中心;中南大学冶金与环境学院;
  • 出版日期:2019-06-15
  • 出版单位:Transactions of Nonferrous Metals Society of China
  • 年:2019
  • 期:v.29
  • 基金:Project(2018SK2044)supported by the Innovation Program of Science&Technology of Hunan Province,China;; Project(51304250)supported by the National Natural Science Foundation of China
  • 语种:英文;
  • 页:ZYSY201906018
  • 页数:8
  • CN:06
  • ISSN:43-1239/TG
  • 分类号:193-200
摘要
生物修复是一种环境友好型的修复技术,在铬污染土壤修复中发挥着越来越重要的作用。为了研究土著微生物对土壤中Cr(Ⅵ)的还原过程,在生物反应器里进行一系列微生物好氧培养实验。结果显示:在土著微生物存在情况下,在铬污染土壤中添加培养基使Cr(Ⅵ)浓度在66h内从1521.9降低至199.2mg/kg,而灭菌土壤中Cr(Ⅵ)浓度稍微降低,表明Cr(Ⅵ)的还原归因于土著微生物的作用。在微生物修复过程中,Cr(Ⅵ)的生物还原发生在NO_3~-、Mn~(4+)和Fe~(3+)的还原后,而先于SO_4~(2-)的还原。Cr(Ⅵ)还原过程可分为两个阶段,分别以生物还原作用的指数方程模型和主要离子综合效应的线性方程模型为特征。土著Cr(Ⅵ)还原菌在Cr(Ⅵ)污染土壤的原位修复中具有潜在的应用前景。
        Bioremediation plays an increasingly important role in the remediation of chromium-contaminated soil because it is an environmentally friendly technology. To investigate the Cr(Ⅵ)reduction process by indigenous microorganisms in soil, a batch of incubation experiments were carried out in a bioreactor under aerobic conditions. The results showed that in the presence of indigenous microorganisms, the Cr(Ⅵ) concentration in the chromium-contaminated soil decreased from 1521.9 to 199.2 mg/kg within 66 h with culture medium addition, while a slight decrease in the Cr(Ⅵ) concentration was found in the sterilized soil,implying that the indigenous microorganisms contributed to the Cr(Ⅵ) reduction. In the microbial remediation process, Cr(Ⅵ)microbial reduction occurred after the reduction of NO_3~-, Mn~(4+) and Fe~(3+) and,before SO_4~(2-) reduction. The reduction process of Cr(Ⅵ) can be divided into two phases, characterized by the exponential equation model of microbial reduction and the linear equation model of the combined effect of the major ions. It can be concluded that indigenous Cr(Ⅵ)-reducing bacteria have a potential application for in-situ remediation of Cr(Ⅵ)-contaminated soil.
引文
[1]MADHAⅥ V,REDDY A V B,REDDY K G,MADHAⅥ G,PRASAD TNVKV.An overview on research trends in remediation of chromium[J].Research Journal of Recent Sciences,2013,2(1):71-83.
    [2]DAI Yu,YANG Zhong-fa,ZHENG Yuan-ming.A reviewon the environmental behaviors and toxicity assessment of chromiumin soil-plant systems[J].Environmental Science,2009,30(11):3432-3440.
    [3]WANG Yun-yan,CHAI Li-yuan,WANG Qing-wei,YANG Zhi-hui,DENG Rong.Electrochemical response to biomass of bacterial cells of Achromobacter sp.CH-1 growth[J].Transactions of Nonferrous Metals Society of China,2017,27(4):932-938.
    [4]CUMMINGS D E,FENDORF S,SINGH N,SANI R K,PEYTON BM,MAGNUSON T S.Reduction of Cr(Ⅵ)under acidic conditions by the facultative Fe(Ⅲ)-reducing bacterium Acidiphilium cryptum[J].Environmental Science&Technology,2007,41(1):146-152.
    [5]DHAL B,THATOI H,DAS N,PANDEY B D.Reduction of hexavalent chromium by Bacillus sp.isolated from chromite mine soils and characterization of reduced product[J].Journal of Chemical Technology&Biotechnology,2010,85:1471-1479.
    [6]ALVAREZ G S,FOGLIA M L,CAMPOROTONDI D E,TUTTOLOMONDO M V,DESIMONE M F,DíAZ L E.A functional material that combines the Cr(Ⅵ)reduction activity of Burkholderia sp.with the adsorbent capacity of sol-gel materials[J].Journal of Materials Chemistry,2011,21(17):6359-6364.
    [7]KARTHIK C,BARATHI S,PUGAZHENDHI A,RAMKUMAR V S,THI N B D,ARULSELⅥ P I.Evaluation of Cr(Ⅵ)reduction mechanism and removal by Cellulosimicrobium funkei strain AR8,a novel haloalkaliphilic bacterium[J].Journal of Hazardous Materials,2017,333:42-53.
    [8]ZHANG Ying,ZHANG Ying-ying,TANG Jie,MA Jiong.Characterization of reduction of hexavalent chromium by Exiguobacterium sp.MH3[J].Chinese Journal of Applied&Environmental Biology,2014,20(5):791-797.
    [9]ZHU Wen-jie,YANG Zhi-hui,MA Ze-min,CHAI Li-yuan.Reduction of high concentrations of chromate by Leucobacter sp.CRB1 isolated from Changsha,China[J].World Journal of Microbiology and Biotechnology,2008,24(7):991-996.
    [10]SHI Yan,CHAI Li-yuan,YANG Zhi-hui,JING Qing-xiu,CHENRun-hua,CHEN Yue-hun.Identification and hexavalent chromium reduction characteristics of Pannonibacter phragmitetus[J].Bioprocess and Biosystems Engineering,2012,35(5):843-850.
    [11]WANG Yang-yang,YANG Zhi-hui,PENG Bing,CHAI Li-yuan,WUBao-lin,WU Rui-ping.Biotreatment of chromite ore processing residue by Pannonibacter phragmitetus BB[J].Environmental Science and Pollution Research,2013,20(8):5593-5602.
    [12]WANG Yang-yang,PENG Bing,YANG Zhi-hui,TANG Chong-jian,CHEN Yue-hui,LIAO Qi,LIAO Ying-ping.Treatment of Cr(Ⅵ)contaminated water with Pannonibacter phragmitetus BB[J].Environmental Earth Sciences,2013,71(10):4333-4339.
    [13]WANG Yang-yang,PENG Bing,YANG Zhi-hui,CHAI Li-yuan,LIAO Qi,ZHANG Zhi,LI Chuang.Bacterial community dynamics during bioremediation of Cr(Ⅵ)-contaminated soil[J].Applied Soil Ecology,2015,85:50-55.
    [14]LIAO Ying-ping,MIN Xiao-bo,YANG Zhi-hui,CHAI Li-yuan,LIAO Qi,WU Bao-lin.Assessment of the stability of chromium in remedied soils by Pannonibacter phragmitetus BB and its risk to groundwater[J].Journal of Soils and Sediments,2014,14(6):1098-1106.
    [15]WANG Yang-yang,CHAI Li-yuan,LIAO Qi,TANG Chong-jian,LIAO Ying-ping,PENG Bing,YANG Zhi-hui.Structural and genetic diversity of hexavalent chromium-resistant bacteria in contaminated soil[J].Geomicrobiology Journal,2015,33(3-4):222-229.
    [16]KANG Chun-xi,WU Ping-xiao,LI Li-ping,YU Lang-feng,RUANBo,GONG Bei-ni,ZHU Neng-wu.Cr(Ⅵ)reduction and Cr(Ⅲ)immobilization by resting cells of Pseudomonas aeruginosa CCTCCAB93066:Spectroscopic,microscopic,and mass balance analysis[J].Environmental Science and Pollution Research International,2017,24(6):5949-5963.
    [17]LONG Dong-yan,TANG Xian-jin,CAI Kuan,CHEN Guang-cun,SHEN Chao-feng,SHI Ji-yan,CHEN Ling-gui,CHEN Ying-xu.Cr(Ⅵ)resistance and removal by indigenous bacteria isolated from chromium-contaminated soil[J].Journal of Microbiology and Biotechnology,2013,23(8):1123-1132.
    [18]PANNEERSELVAM P,CHOPPALA G,KUNHIKRISHNAN A,BOLAN N.Potential of novel bacterial consortium for the remediation of chromium contamination[J].Water,Air&Soil Pollution,2013,224(12):1-11.
    [19]DAS S,MISHRA J,DAS S K,PANDEY S,RAO D S,CHAKRABORTY A,SUDARSHAN M,DAS N,THATOI H.Investigation on mechanism of Cr(Ⅵ)reduction and removal by Bacillus amyloliquefaciens,a novel chromate tolerant bacterium isolated from chromite mine soil[J].Chemosphere,2014,96:112-121.
    [20]SAYEL H,BAHAFID W,JOUTEY N T,DERRAZ K,BENBRAHIM K F,KORAICHI S I,GHACHTOULI N E.Cr(Ⅵ)reduction by Enterococcus gallinarum isolated from tannery waste-contaminated soil[J].Annals of Microbiology,2011,62(3):1269-1277.
    [21]LIAO Ying-ping,MIN Xiao-bo,YANG Zhi-hui,CHAI Li-yuan,ZHANG Shui-juan,WANG Yang-yang.Physicochemical and biological quality of soil in hexavalent chromium-contaminated soils as affected by chemical and microbial remediation[J].Environmental Science and Pollution Research,2014,21(1):379-388.
    [22]JEYASINGH J,SOMASUNDARAM V,PHILIP L,BHALLAMUDIS M.Bioremediation of Cr(Ⅵ)contaminated soil/sludge:Experimental studies and development of a management model[J].Chemical Engineering Journal,2010,160(2):556-564.
    [23]JIANG Wen-jun,CAI Quan,XU Wei,YANG Ming-wei,CAI Yong,DIONYSIOU D D,O'SHEA K E.Cr(Ⅵ)adsorption and reduction by humic acid coated on magnetite[J].Environmental Science&Technology,2014,48(14):8078-8085.
    [24]QIAN Jin,ZHOU Jun-mei,WANG Lian-lian,WEI Li,LI Qin,WANG Dong-bo,WANG Qi-lin.Direct Cr(Ⅵ)bio-reduction with organics as electron donor by anaerobic sludge[J].Chemical Engineering Journal,2017,309:330-338.
    [25]WILLIAMS A G B,SCHERER M M.Kinetics of Cr(Ⅵ)reduction by carbonate green rust[J].Environmental Science&Technology,2001,35(17):3488-3494.
    [26]CHEN Na,LAN Ye-qing,WANG Bo,MAO Jing-dong.Reduction of Cr(Ⅵ)by organic acids in the presence of Al(Ⅲ)[J].Journal of Hazardous Materials,2013,260:150-156.
    [27]LI Dong,JI Guo-zhu,HU Jing,HU Si-yang,YUAN Xing-dong.Remediation strategy and electrochemistry flushing&reduction technology for real Cr(Ⅵ)-contaminated soils[J].Chemical Engineering Journal,2018,334:1281-1288.
    [28]ALOWITZ M J,SCHERER M M.Kinetics of nitrate,nitrite,and Cr(Ⅵ)reduction by iron metal[J].Environmental Science&Technology,2002,36(3):299-306.
    [29]LI De-fu,LI Xin,XIE Yi-fei.Removal of heavy metals and arsenic by microorganisms:Mechanism and techniques of compound sulfate reducing bacteria[M].Beijing:Chemical Industry Press,2011.(in Chinese)
    [30]HAN X,WONG Y S,WONG M H,TAM N F Y.Biosorption and bioreduction of Cr(Ⅵ)by a microalgal isolate,Chlorella miniata[J].Journal of Hazardous Materials,2007,146:65-72.
    [31]RAASHID S,RIZⅥ M A,KHAN B.Coordination inspired redox behaviour of Fe(II)and Co(II)explored for simultaneous iron oxidation state analysis[J].Journal of Pharmacy Research,2012,5(5):2715-2720.
    [32]CHAI Li-yuan,DING Chun-lian,TANG Chong-jian,YANGWei-chun,YANG Zhi-hui,WANG Yang-yang,LIAO Qi,LI Jia-wei.Discerning three novel chromate reduce and transport genes of highly efficient Pannonibacter phragmitetus BB:From genome to gene and protein[J].Ecotoxicology and Environmental Safety,2018,162:139-146.
    [33]MIN Xiao-bo,WANG Yang-yang,CHAI Li-yuan,YANG Zhi-hui,LIAO Qi.High-resolution analyses reveal structural diversity patterns of microbial communities in chromite ore processing residue(COPR)contaminated soils[J].Chemosphere,2017,183:266-276.
    [34]SU Chun-ming,LUDWIG R D.Treatment of hexavalent chromium in chromite ore processing solid waste using a mixed reductant solution of ferrous sulfate and sodium dithionite[J].Environmental Science&Technology,2005,39(16):6208-6216.
    [35]GHEJU M,BALCU I,VANCEA C.An investigation of Cr(Ⅵ)removal with metallic iron in the co-presence of sand and/or MnO2[J].Journal of Environmental Management,2016,170:145-151.
    [36]PETTINE M,TONNINA D,MILLERO F J.Chromium(Ⅵ)reduction by sulphur(IV)in aqueous solutions[J].Marine Chemistry,2006,99(1-4):31-41.
    [37]LI Chen,LAN Ye-qing,DENG Bao-lin.Catalysis of manganese on chromium(Ⅵ)reduction by citrate[J].Pedosphere,2007,17(3):318-323.
    [38]LI Yun-yi,LIANG Jia-liang,HE Xiao,ZHANG Li,LIU Yang-sheng.Kinetics and mechanisms of amorphous FeS2 induced Cr(Ⅵ)reduction[J].Journal of Hazardous Materials,2016,320:216-225.
    [39]LV Jin-fang,TONG Xiong,ZHENG Yong-xing,XIE Xian,HUANGLing-yun.Reduction of Cr(Ⅵ)with a relative high concentration using different kinds of zero-valent iron powders:Focusing on effect of carbon content and structure on reducibility[J].Journal of Central South University,2018,25:2119-2130.
    [40]WU Ping-xiao,LI Shu-zhen,JU Li-ting,ZHU Neng-wu,WU Jin-hua,LI Ping,DANG Zhi.Mechanism of the reduction of hexavalent chromium by organo-montmorillonite supported iron nanoparticles[J].Journal of Hazardous Materials,2012,219-220:283-288.
    [41]HAN Chong,JIAO Ya-nan,WU Qian-qian,YANG Wang-jin,YANGHe,XUE Xiang-xin.Kinetics and mechanism of hexavalent chromium removal by basic oxygen furnace slag[J].Journal of Environmental Science,2016,46:63-71.(in Chinese)
    [42]HUANG W H,DONG C D,CHEN C W,SURAMPALLI R Y,KAOC M.Application of sulfate reduction mechanisms for the simultaneous bioremediation of toluene and copper contaminated groundwater[J].International Biodeterioration&Biodegradation,2017,124:215-222.
    [43]GONG Bei-ni,WU Ping-xiao,HUANG Zhu-jian,LI Yue-wu,DANGZhi,RUAN Bo,KANG Chun-xi,ZHU Neng-wu.Enhanced degradation of phenol by Sphingomonas sp.GY2B with resistance towards suboptimal environment through adsorption on kaolinite[J].Chemosphere,2016,148:388-394.
    [44]RUAN Bo,WU Ping-xiao,CHEN Mei-qing,LAI Xiao-lin,CHENLi-ya,YU Lang-feng,GONG Bei-ni,KANG Chun-xi,DANG Zhi,SHI Zhen-qing,LIU Ze-hua.Immobilization of Sphingomonas sp.GY2B in polyvinyl alcohol-alginate-kaolin beads for efficient degradation of phenol against unfavorable environmental factors[J].Ecotoxicology and Environmental Safety,2018,162:103-111.
    [45]BARRERA-DíAZ C E,LUGO-LUGO V,BILYEU B.A review of chemical,electrochemical and biological methods for aqueous Cr(Ⅵ)reduction[J].Journal of Hazardous Materials,2012,223-224:1-12.
    [46]THOMAS G W.Methods of soil analysis[M].Madison:Soil Science Society of America and American Society of Agronomy,1996:475-490.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700