用户名: 密码: 验证码:
拉萨河河流健康评价指标体系构建及应用
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Construction and application of health assessment index system for Lhasa River
  • 作者:陈歆 ; 靳甜甜 ; 苏辉东 ; 林俊强 ; 王东波 ; 刘国华 ; 张俊洁
  • 英文作者:CHEN Xin;JIN Tiantian;SU Huidong;LIN Junqiang;WANG Dongbo;LIU Guohua;ZHANG Junjie;The Tibet Autonomous Region Environmental Protection Bureau;Institute of Water Resources and Hydropower Research;Hulunbeier Environmental Monitoring Center;Research Center for Eco-Environmental Sciences,Chinese Academy of Sciences;College of Resources and Environment,University of Chinese Academy of Sciences;
  • 关键词:拉萨河 ; 河流健康 ; 评价 ; 指标体系
  • 英文关键词:Lhasa River;;river health;;assessment;;index system
  • 中文刊名:STXB
  • 英文刊名:Acta Ecologica Sinica
  • 机构:西藏自治区环境保护厅;中国水利水电科学研究院;呼伦贝尔市环境监测中心站;中国科学院生态环境研究中心;中国科学院大学资源与环境学院;
  • 出版日期:2019-02-08
  • 出版单位:生态学报
  • 年:2019
  • 期:v.39
  • 基金:西藏自治区重点科技计划项目(Z2016C01G01/08);; 国家重点研发计划(2016YFC0502103)
  • 语种:中文;
  • 页:STXB201903005
  • 页数:11
  • CN:03
  • ISSN:11-2031/Q
  • 分类号:46-56
摘要
为全面反映拉萨河干流生态环境现状,基于拉萨河特征和国内外研究构建了包含水文、水质、生物、生境、服务功能5个要素12个指标的河流健康评价指标体系,提出了赋值标准,并在拉萨干流进行了应用。评价所用数据来自资料收集、文献调研、现场监测和调查。评价结果显示拉萨河干流整体处于较为健康状态,且上游健康状况优于中下游。上游河段枯水期水质达到I类水功能区水质目标,丰水期氨氮含量未达到I类水功能区水质目标,总达标率为50%,赋50分,其余指标赋值大于75分;中游河段受水电站运行和灌溉引水影响,流量过程变异程度、河流连通阻隔状况、大型底栖无脊椎动物科级耐污指数赋值较低,分别为0分、25分和45分,生态基流保障度、外来鱼类入侵率、河道稳定性指标较上游变差,赋值在50—75分之间,其余指标赋值大于75分;下游河段流量过程变异程度、外来鱼类入侵情况赋值为0分,河流连通阻隔状况与中游相同为25分,大型底栖无脊椎动物科级耐污指数赋45分,河道稳定性赋68分,其余指标赋值大于75分。从河流健康角度分析,未来拉萨河流域管理应重点关注上游湿地面源问题、中下游水利水电工程的综合效应、人类聚集区鱼类入侵等问题。
        To reflect comprehensively the health statement of the Lhasa River main stream,a river health evaluation index system including 14 indexes involving hydrological water resources,water quality,biology,habitat,and service functions was constructed based on the characteristics of the Lhasa River and domestic and foreign research. The health evaluation index system was applied to the Lhasa River. The data used in the evaluation came from data collection,literature research,and field monitoring and investigation. The evaluation results showed that the Lhasa River is generally in a relatively healthy state,and the health statement of the upper reaches was better than the middle and lower reaches. The water quality of the upper reaches fulfilled the requirement of a Class I water function area during the dry season; however,in the wet season,ammonia nitrogen content exceeded the concentration limit prescribed for a Class I water function area. The total water qualification rate was 50% and scored 50. The remaining indexes of the upper reaches scored more than 75. Affected by hydropower stations and irrigation projects,the degree of variation in the flow process,river connectivity barrier,and family biotic index scored 0,25,and 45 respectively in the middle reaches; ecological base flow security degree,invasive percentage of exotic fish,and river stability scored between 50 and 75; the other indexes of midstream scored over 75.Degree of variation in the flow process and invasive percentage of exotic fish scored 0 for downstream; river connectivity barrier scored 25; family biotic index scored 45; river stability scored 68; the other indexes of the lower reaches scored more than 75. From a river health perspective,the future management of the Lhasa River basin should focus on non-point source pollution from wet land,the comprehensive effect of hydropower station and irrigation projects,and the invasion of the river by exotic fish.
引文
[1]Halpern B S,Longo C,Hardy D,Mc Leod K L,Samhouri J F,Katona S K,Kleisner K,Lester S E,O’Leary J,Ranelletti M,Rosenberg A A,Scarborough C,Selig E R,Best B D,Brumbaugh D R,Chapin F S,Crowder L B,Daly K L,Doney S C,Elfes C,Fogarty M J,Gaines S D,Jacobsen K I,Karrer L B,Leslie H M,Neeley E,Pauly D,Polasky S,Ris B,Martin K S,Stone G S,Sumaila U R,Zeller D.An index to assess the health and benefits of the global ocean.Nature,2012,488(7413):615-620.
    [2]Fryirs K.Guiding principles for assessing geomorphic river condition:application of a framework in the Bega catchment,South Coast,New South Wales,Australia.CATENA,2003,53(1):17-52.
    [3]Carson R T,Mitchell R C.The Value of clean water:the public's willingness to pay for boatable,fishable,and swimmable quality water.Water Resources Research,1993,29(7):2445-2454.
    [4]Wilson M A,Carpenter S R.Economic valuation of freshwater ecosystem services in the United States:1971-1997.Ecological Applications,1999,9(3):772-783.
    [5]Johnson B L,Richardson W B,Naimo T J.Past,present,and future concepts in large river ecology:how rivers function and how human activities influence river processes.BioScience,1995,45(3):134-141.
    [6]Johansson M E,Nilsson C,Nilsson E.Do rivers function as corridors for plant dispersal?Journal of Vegetation Science,1996,7(4):593-598.
    [7]Karr J R.Defining and measuring river health.Freshwater Biology,1999,41(2):221-234.
    [8]Schofield N J,Davies P E.Measuring the health of our rivers.Water,1996,23:39-43.
    [9]文伏波,韩其为,许炯心,胡春宏,陈吉余,李国英,董哲仁,王光谦.河流健康的定义与内涵.水科学进展,2007,18(1):140-150.
    [10]陈锋,陈毅峰.拉萨河鱼类调查及保护.水生生物学报,2010,34(2):278-285.
    [11]范丽卿,刘海平,林进,普穷.拉萨河流域外来鱼类的分布、群落结构及其与环境的关系.水生生物学报,2016,40(5):958-967.
    [12]李宝海,余耀斌,达娃,邱城,林斌,周建设.拉萨河流域拉萨市段农业面源污染情况浅析.环境管理,2012,(4):74-77.
    [13]刘凤,李梅,张荣飞,崔益斌.拉萨河流域重金属污染及健康风险评价.环境化学,2012,31(5),580-585.
    [14]周丹,黄川友.拉萨河流域水环境现状及污染防治对策.四川水利,2007,28(2):48-51.
    [15]布多,罗文培,王燕飞,扎西次仁.拉萨河流域水体铅、锌含量的初步研究.西藏大学学报:自然科学版,2010,25(2):17-23.
    [16]张圣微,雷玉平,姚琴,李红军.土地覆被和气候变化对拉萨河流域径流量的影响.水资源保护,2010,26(2):39-44.
    [17]耿雷华,刘恒,钟华平,刘翠善.健康河流的评价指标和评价标准.水利学报,2006,37(3):253-258.
    [18]翟晶,徐国宾,郭书英,王乙震.基于协调发展度的河流健康评价方法研究.水利学报,2016,47(11):1465-1471.
    [19]张镱锂,王春连,摆万奇,王兆锋,土艳丽,央珍.拉萨河流域高寒湿地分布(英文).地理学报,2010,20(3):375-388.
    [20]赵矿,潘刚.西藏湿地综述.山东林业科技,2010,40(2):97-99.
    [21]邓晓军,许有鹏,翟禄新,刘娅,李艺.城市河流健康评价指标体系构建及其应用.生态学报,2014,34(4):993-1001.
    [22]朱卫红,曹光兰,李莹,徐万玲,史敏,秦雷.图们江流域河流生态系统健康评价.生态学报,2014,34(14):3969-3977.
    [23]Merz S K.Flows:A Method for Determining Environmental Water Requirements in Victoria.2nd ed.Melbourne:Department of Environment and Primary Industries,2013.
    [24]封光寅,李文杰,周丽华,陈冬.流量过程变异对汉江中下游河流健康影响分析.水文,2016,36(1):46-50.
    [25]李雪,彭金涛,童伟.水利水电工程生态流量研究综述.水电站设计,2016,32(4):71-75.
    [26]涂敏.基于水功能区水质达标率的河流健康评价方法.人民长江,2008,39(23):130-133.
    [27]Ladson A R,White L J,Doolan J A,Finlayson B L,Hart B T,Lake P S,Tilleard J W.Development and testing of an Index of Stream Condition for waterway management in Australia.Freshwater Biology,1999,41(2):453-468.
    [28]黄龙,焦锋.阳澄湖水源地健康风险评价及污染源分析.环境科学与管理,2010,35(6):190-194.
    [29]李宁,陈阿兰,杨春江,孙瑜旸,马国良,马琪.城镇化对湟水河上游水质和底栖动物群落结构的影响.生态学报,2017,37(10):3570-3576.
    [30]王备新,杨莲芳.我国东部底栖无脊椎动物主要分类单元耐污值.生态学报,2004,24(12):2768-2775.
    [31]张欧阳,卜惠峰,王翠平,熊明.长江流域水系连通性对河流健康的影响.人民长江,2010,41(2):1-5,17-17.
    [32]中水北方勘测设计研究有限责任公司.拉萨河流域综合规划环境影响报告书.天津:中水北方勘测设计研究有限责任公司,2018.
    [33]蔺学东,张镱锂,姚治君,巩同梁,王宏,刘林山.拉萨河流域近50年来径流变化趋势分析.地理科学进展,2007,26(3):58-67.
    [34]Labat D,Goddéris Y,Probst J L,Guyot J L.Evidence for global runoff increase related to climate warming.Advances in Water Resources,2004,27(6):631-642.
    [35]巩同梁,刘昌明,刘景时.拉萨河冬季径流对气候变暖和冻土退化的响应.地理学报,2006,61(5):519-526.
    [36]杨元合,朴世龙.青藏高原草地植被覆盖变化及其与气候因子的关系.植物生态学报,2006,30(1):1-8.
    [37]付国珍,摆万奇,姚丽娜.拉萨河流域耕地不同尺度土壤水分影响因子.应用生态学报,2015,26(7):2115-2122.
    [38]陈华,Harmon M E,田汉勤.全球变化对陆地生态系统枯落物分解的影响(英文).生态学报,2001,21(9):1559-1563.
    [39]宋飘,张乃莉,马克平,郭继勋.全球气候变暖对凋落物分解的影响.生态学报,2014,34(6):1327-1339.
    [40]张春光,贺大为.西藏的鱼类资源.生物学通报,1997,32(6):9-10.
    [41]洛桑,旦增,布多.拉萨河鱼类资源现状与利用对策.西藏大学学报:自然科学版,2011,26(2):7-10.
    [42]吕永磊,郝世鑫,王宠,孙东方,王晓通,刘海平,商鹏.拉萨河源头水域中浮游生物、鱼类资源调查与分析.海洋与湖沼,2016,47(2):407-413.
    [43]范丽卿,土艳丽,李建川,方江平.拉萨市拉鲁湿地鱼类现状与保护.资源科学,2011,33(9):1742-1749.
    [44]范丽卿,刘海平,郭其强,潘刚.拉萨甲玛湿地鱼类资源及其时空分布.资源科学,2010,32(9):1657-1665.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700