用户名: 密码: 验证码:
组合式免跟踪聚光光学系统设计(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design of combined non-tracking concentrated optical system
  • 作者:茹占强 ; 宋贺伦 ; 吴菲 ; 宋盛星 ; 朱煜 ; 殷志珍 ; 张耀辉
  • 英文作者:Ru Zhanqiang;Song Helun;Wu Fei;Song Shengxing;Zhu Yu;Yin Zhizhen;Zhang Yaohui;System Integration & IC Design Division, Suzhou Institute of Nano-tech and Nano-bionics,Chinese Academy of Sciences;
  • 关键词:光学设计 ; 免跟踪聚光光学系统 ; 组合优化 ; 线聚焦菲涅耳透镜 ; 二次聚光器
  • 英文关键词:optical design;;non-tracking concentrated optical system;;combinatorial optimization;;line Fresnel lens;;secondary optical element
  • 中文刊名:HWYJ
  • 英文刊名:Infrared and Laser Engineering
  • 机构:中国科学院苏州纳米技术与纳米仿生研究所系统集成与IC设计研究部;
  • 出版日期:2018-12-03 13:39
  • 出版单位:红外与激光工程
  • 年:2019
  • 期:v.48;No.293
  • 基金:国家重点研发计划(2016YFE0129400);; 国家自然科学基金面上项目(51377159);; “十三五”国家密码发展基金(MMJJ20180112);; 中国科学院青年创新促进会人才资助计划(2016290)
  • 语种:英文;
  • 页:HWYJ201903033
  • 页数:7
  • CN:03
  • ISSN:12-1261/TN
  • 分类号:245-251
摘要
针对当前聚光光伏系统中自动跟踪系统故障率高及跟踪成本大等问题,提出了一种由线聚焦菲涅耳透镜、反射式二次聚光器和全反射棱锥组成的组合式免跟踪聚光光学系统,论述了各组成元件的工作原理与设计方法。在光学设计软件Zemax里对该系统进行结构优化与仿真分析,结果表明,在俯仰角最大为16°时,该系统的平均聚光效率为24.1%,与FRS系统相比提高了18.7%。集成了基于组合式免跟踪聚光光学系统的免跟踪聚光光伏模组,初步测试结果表明,该模组在非跟踪状态下光电转换效率最高达到19.6%,4 h后光电转换效率仍能达到5.9%。
        A combined non-tracking concentrated optical(CNTCO) system composed of line Fresnel lens(LFL), reflection-type secondary optical element(R-SOE) and total internal reflection prism(TIRP)was proposed due to the high failure rate and high cost of the automatic solar tracking system. Moreover,the principle and design method of each component were discussed. The structure of the system was optimized and simulated in optical design software Zemax. The results show that the average concentration efficiency of the system reaches up to 24.1%, an 18.7% increasement compared with a combined system consisted of LFL and R-SOE(FRS), on the condition that the pitch angle is up to 16 °.The non-tracking concentrated photovoltaic module based on CNTCO system was integrated and preliminarily tested. The test results indicate that the photoelectric transformation efficiency of the module could be optimized up to 19.6% on non-tracking condition, even still up to 5.9% after 4 hours.
引文
[1] Kim B, Kim J K, Park C K, et al. Design and fabrication of concentrated photovoltaic optics with high numerical aperture using a curved catadioptric optical system[J]. Journal of Mechanical Science&Technology, 2016, 30(3):1315-1322.
    [2] Ghosh A, Nirala A K, Yadav H L. Wavelength selective holographic concentrator:Application to concentrated photovoltaics[J]. Optik-International Journal for Light and Electron Optics, 2015, 126(23):4313-4318.
    [3] Burhan M, Chua K J E, Ng K C. Simulation and development of a multi-leg homogeniser concentrating assembly for concentrated photovoltaic(CPV)system with electrical rating analysis[J]. Energy Conversion&Management, 2016, 116:58-71.
    [4] Wang Xiao, Cao Miao, An Zhiyong, et al. Design and research of total-internal-reflection solar energy concentrating module[J]. Infrared and Laser Engineering, 2016, 45(10):1020001.(in Chinese)
    [5] Wattana Ratismith, Yann Favre, Maxime Canaff, et al.A non-tracking concentrating collector for solar thermal applications[J]. Applied Energy, 2017, 200:39-46.
    [6] Baig H, Sellami N, Mallick T K. Trapping light escaping from the edges of the optical element in a concentrating photovoltaic system[J]. Energy Convers Manage, 2015, 90:238-246.
    [7] Tharamuttam J K, Ng A K. Design and development of an automatic solar tracker[J]. Energy Procedia, 2017,143:629-634.
    [8] Ca nada J, Utrillas M P, Martinez-Lozano J A, et al.Design of a sun tracker for the automatic measurement of spectral irradiance and construction of an irradiance database in the 330-1 100 nm range[J]. Renewable Energy, 2007, 32(12):2053-2068.
    [9] Chen Y T, Ho T H. Design method of non-imaging secondary(NIS)for CPV usage[J]. Solar Energy, 2013,93:32-42.
    [10] Wang Nianju, Cai Huaiyu, Huang Zhanhua. The method of non-tracking sunlight importing lighting systems[J].Acta Energiae Solaris Sinica, 2017, 38(5):1206-1210.(in Chinese)
    [11] Li Wang, Xu Xiping, Song Helun, et al. Design and analysis of the line focus Fresnel concentrator based on the diffused focal points method[J]. Infrared and Laser Engineering, 2010, 39(4):721-726.(in Chinese)
    [12] Zhang Mingjun, Gao Wenying, Niu Quanyun, et al.Characteristics analysis and simulation of Fresnel concentrator in concentrated photovoltaic system[J].Infrared and Laser Engineering, 2015, 44(8):2411-2416.(in Chinese)
    [13] Yang Guanghui, Liu Youqiang, Wang Yumin, et al.Design and research of secondary microprism in dense matrix type concentrating photovoltaic module[J].Infrared and Laser Engineering, 2015, 44(12):3645-3649.(in Chinese)
    [14] Toyoda H, Mukohzaka N, Mizuno S, et al. Column parallel vision system(CPV)for high-speed 2D image analysis[C]//Proceedings of SPIE-The International Society for Optical Engineering, 2001, 4416:256-259.
    [15] Renno C, Landi G, Petito F, et al. Influence of a degraded triple-junction solar cell on the CPV system performances[J]. Energy Conversion&Management,2018, 160:326-340.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700