用户名: 密码: 验证码:
复动量格林函数方法对n-α散射研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation of n-a scattering by combining complex momentum representation and Green's function
  • 作者:王晓伟 ; 郭建友
  • 英文作者:Wang Xiao-Wei;Guo Jian-You;School of Physics and Materials Science, Anhui University;
  • 关键词:复动量格林函数 ; 共振态 ; 散射相移 ; 截面
  • 英文关键词:complex momentum representation-Green's function;;resonant states;;scattering phase shift;;cross section
  • 中文刊名:WLXB
  • 英文刊名:Acta Physica Sinica
  • 机构:安徽大学物理与材料科学学院;
  • 出版日期:2019-04-22 09:51
  • 出版单位:物理学报
  • 年:2019
  • 期:v.68
  • 基金:国家自然科学基金(批准号:11575002)资助的课题~~
  • 语种:中文;
  • 页:WLXB201909010
  • 页数:8
  • CN:09
  • ISSN:11-1958/O4
  • 分类号:93-100
摘要
在复动量表象下引入格林函数,建立了复动量格林函数方法.把这种方法应用于n-α散射系统,计算其散射相移.提取n-α系统的共振态并研究共振态对能级密度、相移和散射截面的贡献.在不引入任何非物理参数的前提下,离散化薛定谔积分方程得到束缚态、共振态和连续谱.通过分析散射态物理量可以更好地理解共振态以及非共振连续谱态.在n-α系统中的成功应用,证明了该方法的正确性.
        Nuclear scattering is a very important physical phenomenon in which the resonance state plays an important role. In order to study the two-body system n-α scattering, Green's function is introduced under the complex momentum representation, so the complex momentum representation-Green' s function approach is established. This method is used to study the elastic scattering of n-α system. By extracting the resonances, it is found that the contributions of resonances in continuum level density, phase shift, and cross section are more important. In the case without introducing any non-physical parameters, it is very helpful to understand the resonant states and the non-resonance continuum states by analyzing the data of scattering states. In this work,we mainly study the p-wave scattering with the orbital angular momentum l = 1, where P_(1/2) is a wide resonance state and P_(3/2) is narrow resonance state. The study shows that the sharp resonance peak of p-wave scattering gives rather broad distribution to the scattering phase shift and the cross section of the n-α system.By comparison, we can see that the theoretical calculation results and experimental data are in good consistence.
引文
[1] Tanihata I 1996 J. Phys. G 22 157
    [2] Ryusuke S, Takayuki M, Kiyoshi K 2005 Prog. Theor. Phys.113 1273
    [3] Kiyoshi K, Masayuki A 2014 Phys. Rev. C 89 034322
    [4] Wigner E P, Eisenbud L 1947 Phys. Rev. 72 29
    [5] Hale G M, Brown R E, Jarmie N 1987 Phys. Lett. 59 763
    [6] Humblet J, Filippone B W, Koonin S E 1991 Phys. Rev. C 442530
    [7] Taylor J R, Wiley J 1972 Scattering Theory:The Quantum Theory on Non-relativistic Collisions(New York:Inc.Mineola)pp204-207
    [8] Amos K, Canton L, Pisent G, Svenne J P, van der Knijff D2003 Nucl. Phys. A 728 65
    [9] Guo J Y, Fang X Z, Jiao P, Wang J, Yao B M 2010 Phys.Rev. C 82 034318
    [10] Lu B N, Zhao E G, Zhou S G 2012 Phys. Rev. Lett. 109072501
    [11] Lu B N, Zhao E G, Zhou S G 2013 Phys. Rev. C 88 024323
    [12] Shi M, Liu Q, Niu Z M, Gou J Y 2014 Phys. Rev. C 90 034319
    [13] Zhu Z L, Niu Z M, Li D P, Liu Q, Guo J Y 2014 Phys. Rev.C 89 034307
    [14] Liu Q, Guo J Y, Niu Z M, Chen S W 2012 Phys. Rev. C 86054312
    [15] Wang H Y, Chang X U 2016 Nucl. Phys. Rev. 33 1
    [16] Jolly R K, Amos T M, Galonsky A 1973 Phys. Rev. C 7 1903
    [17] Brussel M K, Williams J H 1957 Phys. Rev. C106 286
    [18] Hwang C F 1962 Phys. Rev. Lett. 9 104
    [19] May T H, Walter R L, Barschall H H 1963 Nucl. Phys. 45 17
    [20] Craddock M K 1963 Phys. Lett. 5 335
    [21] Barnard A C L, Jones C M, Weil J L 1964 Nucl. Phys. 50 604
    [22] Bunch S M, Forster H H, Kim C C 1964 Nucl. Phys. 53 241
    [23] Morgan G L 1968 Phys. Rev. 168 114
    [24] Garreta D, Sura J, Tarrats A 1969 Nucl. Phys. A 132 204
    [25] Goldstein N P, Held A, Stairs D G 1970 Can. J. Phys. 48 2629
    [26] Schwandt P, Clegg T B, Haeberli W 1971 Nucl. Phys. A 163432
    [27] Bacher A D 1972 Phys. Rev. C 5 1147
    [28] Austin S M, Barschall H H, Shamu R E 1962 Phys. Rev. 1261532
    [29] Shi X X, Shi M, Heng T H 2016 Phys. Rev. C 94 024302
    [30] Li N, Shi M, Guo J Y, Niu Z M, Liang H Z 2016 Phys. Rev.Lett. 117 062502
    [31] Fang Z, Shi M, Guo J Y, Niu Z M, Liang H Z, Zhang S S2017 Phys. Rev. C95 024311
    [32] Ding K M, Shi M, Guo J Y, Niu Z M, Liang H Z 2018 Phys.Rev. C 98 014316
    [33] Shi M, Niu Z M, Liang H Z 2018 Phys. Rev. C97 064301
    [34] Ali S, Bodmer A R 1966 Nucl. Phys. 80 99
    [35] Marquez L 1983 Phys. Rev. C 28 2525
    [36] Mohr P 1994 Z. Phys. A 349 339
    [37] Shlomo S 1992 Nucl. Phys. A 539 17
    [38] Levine R D 1969 Quantum Mechanics of Molecular Rate Processes(Oxford:Clarendon Press Oxford)pp101-106
    [39] Haberzettl H, Workman R 2007 Phys. Rev. C 76 058201
    [40] Hamamoto I 2010 Phys. Rev. C 81 021304(R)
    [41] Fano U 1961 Phys. Rev. 124 1866
    [42] Meng J, Ring P 1996 Rev. Lett. 77 3963
    [43] Sandulesu N, Van Giai N, Liotta R J 2000 Phys. Rev. C 61061301
    [44] Kanada H, Kaneko T, Nagata S, Nomoto M 1979 Prog.Theor. Phys. 61 1327
    [45] Kruppa A T 1998 Phys. Lett. B 431 237
    [46] Kruppa A T, Arai K 1999 Phys. Rev. A 59 3556
    [47] Myo T, Kikuchi Y, Masui H, Kato K 2014 Prog. Part. Nucl.Phys. 79 1
    [48] Shi M, Guo J Y, Liu Q, Niu Z M, Heng T H 2015 Phys. Rev.C 92 054313
    [49] Shi M, Shi X X, Niu Z M, Sun T T, Guo J M 2017 Eur.Phys. J. A 53 40
    [50] Tilley D R, Cheves C M, Godwin J L, et al. 2002 Nucl. Phys.A 708 3
    [51] Hoop B, Barschall H H 1966 Nucl. Phys. 83 65
    [52] Stammbach T, Walter R L 1972 Nucl. Phys. A 180 225
    [53] Vaughn F J, Imhof W L, Johnson R G, Walt M 1960 Phys.Rev. 118 683
    [54] Los Alamos P, Gryogenics G 1959 Nucl. Phys. 12 291

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700