用户名: 密码: 验证码:
对应于铯原子D_1线正交压缩真空态光场的制备
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Generation of Quadrature Squeezed Vacuum Light Field for Cesium D_1 Line
  • 作者:张岩 ; 刘晋宏 ; 马荣 ; 王丹 ; 韩宇宏 ; 张俊香
  • 英文作者:Zhang Yan;Liu Jinhong;Ma Rong;Wang Dan;Han Yuhong;Zhang Junxiang;State Key Laboratory of Quantum Optics and Quantum Optics Devices,Institute of Opto-Electronics,Shanxi University;Collaborative Innovation Center of Extreme Optics,Shanxi University;
  • 关键词:非线性光学 ; 光学参量振荡器 ; 正交压缩真空态 ; 平衡零拍探测 ; 铯原子D1线
  • 英文关键词:nonlinear optics;;optical parametric oscillator;;quadrature squeezed vacuum state;;balanced homodyne detection;;cesium D1 line
  • 中文刊名:GXXB
  • 英文刊名:Acta Optica Sinica
  • 机构:山西大学光电研究所量子光学与光量子器件国家重点实验室;山西大学极端光学协同创新中心;
  • 出版日期:2017-02-16 14:08
  • 出版单位:光学学报
  • 年:2017
  • 期:v.37;No.422
  • 基金:国家自然科学基金(11574188);国家自然科学基金重点项目(11634008);; 高等学校博士学科点专项科研基金博导类课题(20131401110013);; 国家自然科学基金创新研究群体科学基金(61121064)
  • 语种:中文;
  • 页:GXXB201705030
  • 页数:6
  • CN:05
  • ISSN:31-1252/O4
  • 分类号:258-263
摘要
对应于碱金属原子吸收线的非经典光是量子信息网络中重要光源之一,近年来受到人们的广泛关注。而对应于铯原子D_1线的非经典光场由于其独特的波长在固态量子信息网络中有重要应用前景。采用连续单频钛宝石激光器作为光源,将输出的锁定于铯原子D_1线的894.6nm激光通过外腔倍频产生447.3nm蓝光,再用于抽运由周期极化磷酸氧钛钾(PPKTP)晶体作为非线性介质的连续简并光学参量振荡器,获得铯原子D_1线的单模正交压缩真空光。光学参量振荡器阈值为39mW,在注入抽运光功率为30mW时,利用平衡零拍探测装置测得2.8dB正交压缩度。考虑到探测效率,光学参量振荡器输出光场的实际压缩度为4.4dB。
        The non-classical light at alkali atomic absorption lines is one of the important resources for quantum information networks,and it gets more attentions recently.Because of the unique wavelength of the non-classical light field at cesium D_1 line,it has important application prospect in the field of solid-state quantum information networks.Continuous wave single frequency Ti:sapphire laser is used as light source.The 447.3nm blue laser is generated by the output 894.6nm laser locked at cesium D_1 line via frequency doubling of external cavity.The blue laser is used to pump continue wavelength degeneration optical parametric oscillator,and the nonlinear medium of the oscillator is periodically poled KTP(PPKTP)crystal.Then the simple module quadrature squeezed vacuum light at cesium D_1 line is obtained.The threshold of the optical parametric oscillator is 39 mW.When the pump power is30 mW,quadrature squeezing degree measured by balanced homodyne detector is 2.8dB.Taking account of detection efficiency,the actual squeezing degree of the output light field of optical parametric oscillator reaches 4.4dB.
引文
[1]Appel J,Figueroa E,Korystov D,et al.Quantum memory for squeezed light[J].Phys Rev Lett,2008,100(9):093602.
    [2]Hald J,Srensen J L,Schori C,et al.Spin squeezed atoms:a macroscopic entangled ensemble created by light[J].Phys Rev Lett,1999,83(7):1319-1322.
    [3]Yuan Z S,Chen Y A,Zhao B,et al.Experimental demonstration of a BDCZ quantum repeater node[J].Nature,2008,454(7208):1098-1101.
    [4]Polzik E S,Carri J,Kimble H J.Spectroscopy with squeezed light[J].Phys Rev Lett,1992,68(20):3020-3023.
    [5]Kimble H J.The quantum internet[J].Nature,2008,453(7198):1023-1030.
    [6]Slusher R E,Hollberg L W,Yurke B,et al.Observation of squeezed states generated by four-wave mixing in an optical cavity[J].Phys Rev Lett,1985,55(22):2409-2412.
    [7]McCormick C F,Boyer V,Arimondo E,et al.Strong relative intensity squeezing by four-wave mixing in rubidium vapor[J].Opt Lett,2007,32(2):178-180.
    [8]Marino A M,Pooser R C,Boyer V,et al.Tunable delay of Einstein-Podolsky-Rosen entanglement[J].Nature,2009,457(7231):859-862.
    [9]Wang D,Hu L Y,Pang X M,et al.Quadripartite entanglement from a double three-levelλ-type-atom model[J].Phys Rev A,2013,88(4):042314.
    [10]Guo M J,Zhou H T,Wang D,et al.Experimental investigation of high-frequency-difference twin beams in hot cesium atoms[J].Phys Rev A,2014,89(3):033813.
    [11]Qin Z Z,Cao L M,Wang H L,et al.Experimental generation of multiple quantum correlated beams from hot rubidium vapor[J].Phys Rev Lett,2014,113(2):023602.
    [12]Qin Z Z,Cao L M,Jing J T.Experimental characterization of quantum correlated triple beams generated by cascaded four-wave mixing processes[J].Appl Phys Lett,2015,106(21):211104.
    [13]Wu L A,Kimble H J,Hall J L,et al.Generation of squeezed states by parametric down conversion[J].Phys Rev Lett,1986,57(20):2520-2523.
    [14]Pan Qing,Zhang Yun,Zhang Tiancai,et al.Experimental research for intensity difference squeezed light generation at1.08μm wavelength with low pump threshold and high conversion efficiency[J].Chinese J Lasers,1997,24(7):631-634.潘庆,张云,张天才,等.1.08μm波长低阈值高效率强度差压缩光产生的实验研究[J].中国激光,1997,24(7):631-634.
    [15]Eberle T,Steinlechner S,Bauchrowitz J,et al.Quantum enhancement of the zero-area Sagnac interferometer topology for gravitational wave detection[J].Phys Rev Lett,2010,104(25):251102.
    [16]Zhou Y Y,Jia X J,Li F,et al.Experimental generation of 8.4dB entangled state with an optical cavity involving a wedged type-II nonlinear crystal[J].Opt Express,2015,23(4):4952-4959.
    [17]Vahlbruch H,Mehmet M,Danzmann K,et al.Detection of 15dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency[J].Phys Rev Lett,2016,117(11):110801.
    [18]Suzuki S,Yonezawa H,Kannari F,et al.7dB quadrature squeezing at 860nm with periodically poled KTiOPO4[J].Appl Phys Lett,2006,89(6):061116.
    [19]Takeno Y,Yukawa M,Yonezawa H,et al.Observation of-9dB quadrature squeezing with improvement of phase stability in homodyne measurement[J].Opt Express,2007,15(7):4321-4327.
    [20]Burks S,Ortalo J,Chiummo A,et al.Vacuum squeezed light for atomic memories at the D2 cesium line[J].Opt Express,2009,17(5):3777-3781.
    [21]Tanimura T,Akamatsu D,Yokoi Y,etal.Generation of a squeezed vacuum resonant on a rubidium D1line with periodically poled KTiOPO4[J].Opt Lett,2006,31(15):2344-2346.
    [22]Hetet G,Glock O,Pilypas K A,et al.Squeezed light at 795nm using periodically poled KTP[C].CLEOE-IQEC,2007,IF5:IF5_3.
    [23]Predojevic'A,Zhai Z,Caballero J M,et al.Rubidium resonant squeezed light from a diode-pumped optical-parametric oscillator[J].Phys Rev A,2008,78(6):063820.
    [24]Han Y S,Wen X,He J,et al.Improvement of vacuum squeezing resonant on the rubidium D1line at 795nm[J].Opt Express,2016,24(3):2350-2359.
    [25]Pinotsi D,Imamoglu A.Single photon absorption by a single quantum emitter[J].Phys Rev Lett,2008,100(9):093603.
    [26]Du Zhijing,Zhang Yuchi,Wang Xiaoyong,et al.Locking multiple wavelength lasers to the transition of Cesium atoms by using a Fabry-Perot transfer cavity[J].Acta Optica Sinica,2006,26(3):452-457.杜志静,张玉驰,王晓勇,等.不同波长的激光器通过法布里-珀罗腔相对于铯原子谱线的锁定[J].光学学报,2006,26(3):452-457.
    [27]Zhang Y,Liu J H,Wu J Z,et al.Single-frequency tunable 447.3nm laser by frequency doubling of tapered amplified diode laser at cesium D1line[J].Opt Express,2016,24(17):19769-19775.
    [28]Walls D F,Milburn G J.Quantum optics[M].New York:Springer Science&Business Media,2007.
    [29]Drever R W P,Hall J L,Kowalski F V,et al.Laser phase and frequency stabilization using an optical resonator[J].Appl Phys B,1983,31(2):97-105.
    [30]Schneider K,Bruckmeier R,Hansen H,et al.Bright squeezed-light generation by a continuous-wave semimonolithic parametric amplifier[J].Opt Lett,1996,21(17):1396-1398.
    [31]Sun Zhini,Feng Jinxia,Wan Zhenju,et al.Generation of bright squeezed light at 1.5μm telecommunication band and its Wigner function reconstruction[J].Acta Physica Sinica,2016,65(4):044203.孙志妮,冯晋霞,万振菊,等.1.5μm光通信波段明亮压缩态光场的产生及其Wigner函数的重构[J].物理学报,2016,65(4):044203.
    [32]Liu Zengjun,Zhai Zehui,Sun Hengxin,et al.Generation of low-frequency squeezed states[J].Acta Physica Sinica,2016,65(6):060401.刘增俊,翟泽辉,孙恒信,等.低频压缩态光场的制备[J].物理学报,2016,65(6):060401.
    [33]Zhang Yan,Yu Xudong,Di Ke,et al.Locking the phase of balanced homodyne detection system for squeezed light[J].Acta Physica Sinica,2013,62(8):084024.张岩,于旭东,邸克,等.压缩态光场平衡零拍探测的位相锁定[J].物理学报,2013,62(8):084024.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700