用户名: 密码: 验证码:
巢湖微囊藻毒素异构体组成的时空分布特征及影响因子
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Spatiotemporal characteristics of microcystin variants composition and associations with environmental parameters in Lake Chaohu,China
  • 作者:余丽 ; 朱广伟 ; 孔繁翔 ; 李胜男 ; 史小丽 ; 张民 ; 阳振 ; 许海 ; 朱梦圆
  • 英文作者:YU Li;ZHU Guangwei;KONG Fanxiang;LI Shengnan;SHI Xiaoli;ZHANG Min;YANG Zhen;XU Hai;ZHU M engyuan;State Key Laboratory of Lake Science and Environment,Nanjing Institute of Geography and Limnology,Chinese Academy of Sciences;Hunan Academy of Agricultural Sciences,Hunan Institute of Agricultural Environment and Ecology;
  • 关键词:微囊藻毒素 ; 异构体 ; 时空分布 ; 巢湖
  • 英文关键词:Microcystins;;variants;;temporal and spatial distribution;;Lake Chaohu
  • 中文刊名:FLKX
  • 英文刊名:Journal of Lake Sciences
  • 机构:中国科学院南京地理与湖泊研究所湖泊与环境国家重点实验室;湖南省农业科学院湖南省农业环境生态研究所;
  • 出版日期:2019-05-06
  • 出版单位:湖泊科学
  • 年:2019
  • 期:v.31
  • 基金:国家自然科学基金项目(41601203,41671494,31800388);; 国家水体污染控制与治理科技重大专项(2017ZX07203001);; 中国科学院前沿科学重点研究项目(QYZDJ-SSW-DQC008);中国科学院南京地理与湖泊研究所“一三五”战略发展规划项目(NIGLAS2017GH04)联合资助
  • 语种:中文;
  • 页:FLKX201903009
  • 页数:14
  • CN:03
  • ISSN:32-1331/P
  • 分类号:94-107
摘要
有害蓝藻释放微囊藻毒素(MCs),严重威胁饮用水源地用水安全.为了解巢湖MCs污染状况及其异构体组成对水质的影响,于2012年夏季(8月)和秋季(11月),2013年冬季(2月)和春季(5月)进行采样分析,研究了巢湖水体中胞内微囊藻毒素(IMCs)和胞外微囊藻毒素(EMCs)异构体的时空分布及其与环境因子的关系.结果发现,IMCs和EMCs的平均浓度变化范围分别为0.12~6.45μg/L和0.69~1.92μg/L.在3种常见的异构体中,MC-RR和MC-LR比例较高,MC-YR最低,MC-RR和MC-LR是巢湖水体中MCs的主要异构体类型. IMCs和EMCs的异构体浓度及其比例呈现不同的时空分布特征.微囊藻生物量、水温、总磷浓度是影响IMCs和EMCs异构体浓度及其组成变化的关键环境因子.本研究表明巢湖富营养化严重的西湖区夏季能合成更多的MC-RR异构体,而秋、冬季节偏向于释放生理毒性更强的MC-LR异构体.了解MCs异构体组成变化及其关键影响因素,有助于预测预警水体MCs污染状况和评估饮用水源地MCs风险.
        The harmful cyanobacteria pose a serious threat to the safety of drinking water sources because of their ability to release microcystins( MCs). To illuminate the status of MCs contamination and the effect of its variants composition on water quality in Lake Chaohu,the temporal and spatial distribution of intracellular microcystins( IMCs) and extracellular microcystins( EMCs)and main environmental factors in this lake were examined in summer( August) and autumn( November) of 2012,winter( February) and spring( May) of 2013,respectively. The results showed that the average concentrations of IMCs and EMCs varied from0.12 to 6.45 μg/L and from 0.69 to 1.92 μg/L,respectively. Among the three common variants,the proportions of MC-LR and MC-RR to total MCs were higher,and the MC-YR was the lowest. MC-RR and MC-LR were the major MCs variants in Lake Chaohu. The concentration and proportion of IMCs and EMCs variants showed different temporal and spatial distribution characteristics.Statistical analysis showed that Microsystis biomass,water temperature,total phosphorus were the key environmental factors affecting the variation in concentration and composition of different MCs variants. This study highlight the fact that the more MC-RR variant can be synthesized in the western Lake with high eutrophication in summer,while more toxic MC-LR variant was released into water in autumn and winter. Understanding the changes of MCs variants composition and its key factors can help to predict the contaminative status of MCs and assess the risk of MCs in drinking water sources.
引文
[1] Paerl HW,Rd FR,Moisander PH et al. Harmful freshwater algal blooms,with an emphasis on cyanobacteria. The Scientific World Journal,2001,1(1):76.
    [2] Falconer IR. Tumor promotion and liver injury caused by oral consumption of cyanobacteria. Environmental Toxicology,2010,6(2):177-184.
    [3] Li XY ed. Toxicological research of microcystins. Beijing:Science Press,2007:112-116.[李效宇.微囊藻毒素及其毒理学研究.北京:科学出版社,2007:112-116.]
    [4] Chorus I,Bartram J,Chorus I et al. Toxic cyanobacteria in water:a guide to their public health consequences,monitoring and management. Limnology&Oceanography,2000,45(5):255-258.
    [5] Dittmann E,Neilan BA,Erhard M et al. Insertional mutagenesis of a peptide synthetase gene that is responsible for hepatotoxin production in the cyanobacterium Microcystis aeruginosa PCC 7806. Molecular Microbiology,2010,26(4):779-787.
    [6] Stachelhaus T,Marahiel MA. Modular structure of genes encoding multifunctional peptide synthetases required for non-ribosomal peptide synthesis. FEMS Microbiology Letters,1995,125(1):3.
    [7] Carmichael WW. Cyanobacteria secondary metabolites-the cyanotoxins. Journal of Applied Bacteriology,2010,72(6):445-459.
    [8] Jochimsen EM,Carmichael WW,An JS et al. Liver failure and death after exposure to microcystins at a hemodialysis center in Brazil. New England Journal of Medicine,1998,338(13):873-878.
    [9] Song LR,Chen W. Production of microcystins in bloom-forming cyanobacteria and their environment fates:a review. J Lake Sci,2009,21(6):749-757. DOI:10.18307/2009.0601.[宋立荣,陈伟.水华蓝藻产毒的生物学机制及毒素的环境归趋研究进展.湖泊科学,2009,21(6):749-757.]
    [10] Pearson LA,Mihali TK,Moffitt MC et al. On the chemistry,toxicology and genetics of the cyanobacterial toxins,microcystin,nodularin,saxitoxin and cylindrospermopsin. Marine Drugs,2010,8(5):1650-1680.
    [11] Messineo V,Mattei D,Melchiorre S et al. Microcystin diversity in a Planktothrix rubescens population from Lake Albano(Central Italy). Toxicon Official Journal of the International Society on Toxinology,2006,48(2):160-174.
    [12] Neilan BA,Pearson LA,Moffitt MC et al. The genetics and genomics of cyanobacterial toxicity. Oxygen Transport to Tissue XXXIII,2008,619(5):417-452.
    [13] Vijayaraghavan R. Comparative toxicity evaluation of cyanobacterial cyclic peptide toxin microcystin variants(LR,RR,YR)in mice. Toxicology,2003,188(2):285-296.
    [14] Harke MJ,Gobler CJ. Daily transcriptome changes reveal the role of nitrogen in controlling microcystin synthesis and nutrient transport in the toxic cyanobacterium,Microcystis aeruginosa. BMC Genomics,2015,16(1):1068.
    [15] Mowe MA,Porojan C,Abbas F et al. Rising temperatures may increase growth rates and microcystin production in tropical Microcystis species. Harmful Algae,2015,50:88-98.
    [16] Yu L,Kong FX,Zhang M et al. The dynamics of Microcystis genotypes and microcystin production and associations with environmental factors during blooms in Lake Chaohu,China. Toxins,2014,6(12):3238-3257.
    [17] Shi K,Zhang YL,Xu H et al. Long-term satellite observations of microcystin concentrations in Lake Taihu during cyanobacterial bloom periods. Environmental Science&Technology,2015,49(11):6448-6456.
    [18] Sivonen K,Evans WR,Carmichael WW et al. Hepatotoxic microcystin diversity in cyanobacterial blooms collected in portuguese freshwaters. Water Research,1996,30(10):2377-2384.
    [19] Rapala J,Sivonen K,Lyra C et al. Variation of microcystins,cyanobacterial hepatotoxins,in Anabaena spp. as a function of growth stimuli. Applied and Environment Microbiology,1997,63(6):2206-2212.
    [20] Tonk L,Visser PM,Christiansen G et al. The microcystin composition of the cyanobacterium Planktothrix agardhii changes towards a more toxic variant with increasing light intensity. Applied and Environment Microbiology,2005,71(9):5177-5181.
    [21] Van DB,Ferreruela G,Tonk L et al. Pulsed nitrogen supply induces dynamic changes in the amino acid composition and microcystin production of the harmful cyanobacterium Planktothrix agardhii. FEMS Microbiology Ecology,2010,74(2):430-438.
    [22] Oh HM,Lee SJ,Jang MH et al. Microcystin production by Microcystis aeruginosa in a phosphorus-limited chemostat. Applied and Environment Microbiology,2000,66(1):176-179.
    [23] Cai JB,Li WQ,Pang Y et al. Relationship between extra-cellular microcystin and intra-cellular microcystin. Journal of Hydraulic Engineering,2009,40(3):328-334.[蔡金傍,李文奇,逢勇等.水体中溶解性微囊藻毒素与藻类细胞内微囊藻毒素的关系研究.水利学报,2009,40(3):328-334.]
    [24] Chen J,Xie P. Accumulation of hepatotoxic microcystins in freshwater mussels,aquatic insect larvae and oligochaetes in a large,shallow eutrophic lake(Lake Chaohu)of subtropical China. Fresenius Environmental Bulletin,2008,17(7A):849-854.
    [25] Chen J,Xie P,Li L et al. First identification of the hepatotoxic microcystins in the serum of a chronically exposed human population together with indication of hepatocellular damage. Toxicological Sciences,2009,108(1):81-89.
    [26] Chen YW,Chen KN,Hu YH. Discussion on possible error for phytoplankton chlorophyll-a concentration analysis using hot-ethanol extraction method. J Lake Sci,2006,18(5):550-552. DOI:10.18307/2006.0519.[陈宇炜,陈开宁,胡耀辉.浮游植物叶绿素a测定的“热乙醇法”及其测定误差的探讨.湖泊科学,2006,18(5):550-552.]
    [27] Hu HJ,Wei XY eds. Freshwater algae in china:system,classification and ecology. Beijing:Science Press,2006.[胡鸿钧,魏印心.中国淡水藻类:系统、生态及分类.北京:科学出版社,2006.]
    [28] Hillebrand H,Dürselen CD,Kirschtel D et al. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology,2010,35(2):403-424.
    [29] Barco M,Lawton LA,Rivera J et al. Optimization of intracellular microcystin extraction for their subsequent analysis by high-performance liquid chromatography. Journal of Chromatography A,2005,1074(1):23-30.
    [30] Zhang M,Zhang YC,Yang Z et al. Spatial and seasonal shifts in bloom-forming cyanobacteria in Lake Chaohu:Patterns and driving factors. Phycological Research,2016,64(1):44-55.
    [31] Yang H. Ecological studies on microcystins in Lakes Chaohu and Taihu[Dissertation]. Wuhan:Institute of Hydrobiology,Chinese Academic of Science,2006.[杨华.巢湖和太湖微囊藻毒素的生态学研究[学位论文].武汉:中国科学院水生生物研究所,2006.]
    [32] Li YX. Succession of Microcystis blooms in lake Chaohu and competition between different bloom-forming cyanobacterial strains[Dissertation]. Wuhan:Institute of Hydrobiology,Chinese Academic of Science,2013.[李印霞.巢湖微囊藻水华演替及不同水华蓝藻竞争的研究[学位论文].武汉:中国科学院水生生物研究所,2013.]
    [33] Graham JL,Jones JR,Jones SB et al. Environmental factors influencing microcystin distribution and concentration in the midwestern United States. Water Research,2004,38(20):4395-4404.
    [34] Davis TW,Berry DL,Boyer GL et al. The effects of temperature and nutrients on the growth and dynamics of toxic and non-toxic strains of microcystis during cyanobacteriablooms. Harmful Algae,2009,8(5):715-725.
    [35] Ni WM,Zhang JY,Ding TD et al. Environmental factors regulating cyanobacteria dominance and microcystin production in a subtropical lake within the Taihu Watershed,China. Journal of Zhejiang University-Science A:Applied Physics&Engineering,2012,13(4):311-322.
    [36] Naoshi F,Yuhei I,Norio S et al. Effects of temperature change on algal growth. Environmental Technology,1994,15(5):497-500.
    [37] O'Neil JM,Davis TW,Burford MA et al. The rise of harmful cyanobacteria blooms:The potential roles of eutrophication and climate change. Harmful Algae,2012,14(1):313-334.
    [38] Paerl HW,Huisman J. Climate. Blooms like it hot. Science,2008,320(5872):57-58.
    [39] Li DM,Yu Y,Yang Z et al. The dynamics of toxic and nontoxic Microcystis during bloom in the large shallow lake,Lake Taihu,China. Environmental Monitoring&Assessment,2014,186(5):3053-3062.
    [40] Song LR,Chen W. Production of microcystins in bloom-forming cyanobacteria and their environment fates:a review. J Lake Sci,2009,21(6):749-757. DOI:10.18307/2009.0601.[宋立荣,陈伟.水华蓝藻产毒的生物学机制及毒素的环境归趋研究进展.湖泊科学,2009,21(6):749-757.]
    [41] Chen W,Song LR,Peng L et al. Reduction in microcystin concentrations in large and shallow lakes:water and sedimentinterface contributions. Water Research,2008,42(3):763-773.
    [42] Xie LQ,Xie P,Li SX et al. The low TN:TP ratio,a cause or a result of Microcystis blooms? Water Research,2003,37(9):2073-2080.
    [43] Vézie C,Rapala J,Vaitomaa J et al. Effect of nitrogen and phosphorus on growth of toxic and nontoxic Microcystis strains and on intracellular microcystin concentrations. Microbial Ecology,2002,43(4):443-454.
    [44] Rinta-Kanto JM,Konopko EA,Debruyn JM et al. Lake Erie Microcystis:Relationship between microcystin production,dynamics of genotypes and environmental parameters in a large lake. Harmful Algae,2009,8(5):665-673.
    [45] Kotak BG,Lam AK,Prepas EE et al. Role of chemical and physical variables in regulating microcystin-LR concentration in phytoplankton of eutrophic lakes. Canadian Journal of Fisheries&Aquatic Sciences,2000,57(8):1584-1593.
    [46] Davis TW,Harke MJ,Marcoval MA et al. Effects of nitrogenous compounds and phosphorus on the growth of toxic and non-toxic strains of Microcystis during cyanobacterial blooms. Aquatic Microbial Ecology,2010,61(2):149-162.
    [47] Su X,Xue Q,Steinman AD et al. Spatiotemporal dynamics of microcystin variants and relationships with environmental parameters in Lake Taihu,China. Toxins,2015,7(8):3224-3244.
    [48] Zheng L,Xie P,Li YL et al. Variation of intracellular and extracellular microcystins in a shallow,hypereutrophic subtropical chinese lake with dense cyanobacterial blooms. Bulletin of Environmental Contamination and Toxicology,2004,73(4):698-706.
    [49] Zhang W,Lin YQ,Guo DF et al. Influence of different nitrogen and phosphorus concentrations on growth,photosynthesis and microcystin production of Microcystis aeruginosa. Acta Hydrobiological Sinica,2006,30(3):318-322.[张玮,林一群,郭定芳等.不同氮、磷浓度对铜绿微囊藻生长、光合及产毒的影响.水生物学报,2006,30(3):318-322.]
    [50] Wang JX,Xie P,Guo NC. Effects of nonylphenol on the growth and microcystin production of Microcystis strains. Environmental Research,2007,103(1):70-78.
    [51] Wang FF,Tong C,Yang F et al. Spatial and temporal distribution of microcystins in the Fuzhou Shanzai Reservoir. Acta Scientiae Circumstantiae,2011,31(3):533-546.[王菲凤,仝川,杨芳等.福州山仔水库水华微囊藻毒素时空分布特征.环境科学学报,2011,31(3):533-546.]
    [52] Yang F,Zhou Y,Sun R et al. Biodegradation of microcystin-LR and-RR by a novel microcystin-degrading bacterium isolated from Lake Taihu. Biodegradation,2014,25(3):447-457.
    [53] Zhang RF,Deng ZR,Wu CT et al. Characteristic of the temporal distribution of dissolved microcystins and its relationships with environmental factors in a typical freshwater shrimp aquaculture pond in South Taihu Area. Freshwater Fisheries.2018,48(5):41-47.[张荣飞,邓泽融,吴陈涛等.南太湖地区一典型青虾养殖池塘中微囊藻毒素浓度与环境因子间的相关性.淡水渔业,2018,48(5):41-47.]
    [54] Yang H,Xie P,Xu J et al. Seasonal variation of microcystin concentration in Lake Chaohu,a shallow subtropical lake in the People's Republic of China. Bulletin of Environmental Contamination&Toxicology,2006,77(3):367-374.
    [55] Zhang M. The space-time distribution characteristics,causes and degradtion technology research of microcystin in Taoranting lake[Dissertation]. Dalian:Dalian Ocean University,2014.[张默.陶然亭湖微囊藻毒素时间分布特征、成因及降解技术研究[学位论文].大连:大连海洋大学,2014.]
    [56] Liu J,Van OE,Faassen EJ et al. Elevated p CO2causes a shift towards more toxic microcystin variants in nitrogen limited Microcystis aeruginosa. FEMS Microbiology Ecology,2015,92(2). DOI:10.1093/femsec/fiv159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700