用户名: 密码: 验证码:
减阻纳米颗粒吸附岩心表面的去水湿作用机制与实验
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mechanism and experiment of dewetting of drag reduction nanoparticles adsorbed on core surface
  • 作者:顾春元 ; 刘子昂 ; 狄勤丰 ; 张景楠
  • 英文作者:GU Chunyuan;LIU Ziang;DI Qinfeng;ZHANG Jingnan;Shanghai Institute of Applied Mathematics and Mechanics,Shanghai University;Shanghai Key Laboratory of Mechanics in Energy Engineering,Shanghai University;
  • 关键词:疏水纳米颗粒 ; 吸附层 ; 去水湿 ; 临界覆盖率 ; 减阻
  • 英文关键词:hydrophobic nanopartices;;adsorption layer;;dewetting;;critical coverage ratio;;drag reduction
  • 中文刊名:SYDX
  • 英文刊名:Journal of China University of Petroleum(Edition of Natural Science)
  • 机构:上海大学上海市应用数学和力学研究所;上海大学上海市力学在能源工程中的应用重点实验室;
  • 出版日期:2018-06-08 08:35
  • 出版单位:中国石油大学学报(自然科学版)
  • 年:2018
  • 期:v.42;No.228
  • 基金:国家自然科学基金项目(51274136);; 上海市重点学科建设项目(S30106)
  • 语种:中文;
  • 页:SYDX201804021
  • 页数:7
  • CN:04
  • ISSN:37-1441/TE
  • 分类号:179-185
摘要
疏水纳米颗粒吸附在岩心孔壁发生去水湿,形成超强疏水层,是纳米颗粒吸附法降压增注技术的关键。采用热力学理论研究疏水球状纳米颗粒在亲水表面吸附后产生去水湿的临界覆盖率,利用实际储层参数讨论纳米颗粒吸附表面诱发去水湿的主要因素及影响规律,分析去水湿的力学机制;开展纳米颗粒吸附岩心表面的去水湿模拟实验,研究岩心表面润湿性的变化和纳米颗粒的覆盖率。结果表明:岩心表面发生去润湿现象要求纳米颗粒覆盖率大于临界覆盖率;增大颗粒接触角和基底接触角,减小纳米颗粒粒径,降低液气压差,都可以降低临界覆盖率,有利于产生去水湿;疏水纳米颗粒吸附在岩心表面,使表面接触角从30°增加到127°,颗粒覆盖率达到74%,大于临界覆盖率72%;去水湿现象确实可以通过疏水纳米颗粒吸附诱发产生,验证了理论分析的准确性。
        The adsorbed hydrophobic nanoparticles on the core wall can form super hydrophobic layer due to the dewetting,which is the key to Nanofluid drag reduction technology. The critical coverage rate of hydrophobic spherical nanoparticles after adsorption on hydrophilic surfaces was investigated by thermodynamic theory. The main factors affecting the dewetting and their influences were discussed by using the actual reservoir parameters,and the mechanical mechanism of the dewetting was analyzed as well. The dewetting experiment of the core surface adsorbed by nanoparticles was carried out,and the wettability of the core surface and the coverage rate of nanoparticles were studied. The results show that the dewetting requires the coverage rate of nanoparticles is larger than the critical coverage rate. And increasing the particle contact angle and the contact angle of the substrate,or reducing the particle size or reducing the fluid-gas pressure difference can reduce the critical coverage rate,which is beneficial to the dewetting. After the hydrophobic nanoparticles adsorb on the core surface,the surface contact angle increases from 30° to 127°,the particle coverage rate reaches 74%,which is greater than the critical coverage rate of72%. The results indicate that the dewetting could be induced by the adsorption of hydrophobic nanoparticles,which verifies the accuracy of the theoretical analysis.
引文
[1]刘合,金旭,丁彬.纳米技术在石油勘探开发领域的应用[J].石油勘探与开发,2016,43(6):1014-1021.LIU He,JIN Xu,DING Bin.Application of nanotechnology in petroleum exploration and development[J].Petroleum Exploration and Development,2016,43(6):1014-1021.
    [2]顾春元,李国建,狄勤丰,等.均质多孔介质中纳米颗粒吸附层的水流滑移模型[J].水动力学研究与进展A,2016,31(6):127-133.GU Chunyuan,LI Guojian,DI Qinfeng,et al.A advanced slip model of adsorption layer of nano particles in homogeneous porous media[J].Journal of Hydrodynamics A,2016,31(6):127-133.
    [3]CHEN H J,DI Q F,YE F,et al.Numerical simulation of drag reduction effects by hydrophobic nanoparticles adsorption method in water flooding processes[J].Journal of Natural Gas Science and Engineering,2016,35:1261-1269.
    [4]BAI F,WU J,GONG G.Biomimetic"Water Strider Leg"with highly refined nanogroove structure and remarkable water-repellent performance[J].ACS Applied Materials&Interfaces,2014,6(18):16237-16242.
    [5]赵晓非,杨明全,章磊,等.仿生超疏水表面的制备与应用的研究进展[J].化工进展,2016,35(9):2818-2829.ZHAO Xiaofei,YANG Mingquan,ZHANG Lei,et al.Research progress in fabrication and application of bioinspired super-hydrophobic surface[J].Chemical Industry and Engineering Progress,2016,35(9):2818-2829.
    [6]吉海燕,陈刚,胡杰,等.微纳米结构对聚合物超疏水表面润湿性的影响[J].工程塑料应用,2011,39(4):94-96.JI Haiyan,CHEN Gang,HU Jie,et al.Effects of microand nano-structures on wettability of superhydrophobic polymer surface[J].Engineering Plastics Application,2011,39(4):94-96.
    [7]PIT R,HERVET H,LEGER L.Direct experimental evidence of slip in hexadecane:solid interfaces[J].Physical Review Letters,2000,85(5):980-3.
    [8]CCILE C B,BARRAT J L,LYDRIC B,et al.Lowfriction flows of liquid at nanopatterned interfaces[J].Nature Material Letters,2003,2:237-242.
    [9]张凯,黄建业,王峰会.超疏水材料在液压作用下的润湿行为[J].材料研究学报,2016,28(4):281-285.ZHANG Kai,HUANG Jianye,WANG Fenghui.Wetting behavior of superhydrophobic materials under hydraulic pressure[J].Chinese Journal of Materials Research,2016,28(4):281-285.
    [10]刘邱祖,寇子明,贾月梅,等.改性疏水固壁润湿性反转现象的格子Boltzmann方法模拟[J].物理学报,2014,63(10):104701-1-7.LIU Qiuzu,KOU Ziming,JIA Yuemei,et al.Wettability alteration simulation of modified hydrophobic solid surface by lattice Boltzmann method[J].Acta Phys Sin,2014,63(10):104701-1-7.
    [11]刘天庆,孙玮,李香琴,等.纳米结构表面上部分润湿液滴合并诱导弹跳的理论研究[J].物理学报,2014,63(8):086801-1-10.LIU Tianqing,SUN Wei,LI Xiangqin,et al.A theoretical study on coalescence-induced jumping of partially wetted condensed droplets on nano-textured surfaces[J].Acta Phys Sin,2014,63(8):086801-1-10.
    [12]LI D,DD Q F,LI J Y,et al.Large slip length over a nanopatterned surface[J].Chinese Physics Letters,2007,24(4):1021-1024.
    [13]顾春元,狄勤丰,施利毅,等.纳米粒子构建表面的超疏水性能实验研究[J].物理学报,2008,57(5):3071-3076.GU Chunyuan,DI Qinfeng,SHI Liyi,et al.Experimental investigation of superhydrophobic properties of the surface constructed by nanoparticles[J].Acta Phys Sin,2008,57(5):3071-3076.
    [14]WANG X L,DI Q F,ZHANG R L,et al.The hydrophobic nanoparticles adsorption layer on core surface and its properties[J].Advanced Materials Research,2012,465:239-243.
    [15]王建华,王志明,雷世华,等.不同预处理工艺对聚硅纳米材料增注效果的影响研究[J].石油化工应用,2012,31(2):76-79.WANG Jianhua,WANG Zhiming,LEI Shihua,et al.Research on the influence of different pretreatment technology on augmented injection effect of nanometer polysilicon material[J].Petrochemical Industry Application,2012,31(2):76-79.
    [16]CASSIE A,BAXTER S.Wettability of porous surface[J].Trans Faraday Soc,1944,40:546-551.
    [17]顾春元,狄勤丰,沈琛,等.疏水纳米颗粒在油层微孔道中的竞争吸附机制[J].石油勘探与开发,2011,38(1):84-89.GU Chunyuan,DI Qinfeng,SHEN Chen,et al.Adsorption of hydrophobic nanoparticles in reservoir microchannels[J].Petroleum Exploration and Development,2011,38(1):84-89.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700